Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

One significant challenge in machine learning for Structural Health Monitoring (SHM) is reusing previously trained classifiers. A classifier might be suitable for one situation but not for another. Transfer learning techniques try to overcome this difficulty. In SHM, it is common to use the modal parameters as features; however, they are highly influenced by boundary conditions, geometry, and the level of structural damage. This work proposes an innovative approach that performs a similarity analysis to select features before applying transfer learning, aiming at improving classification and damage detection. The reasoning is that a higher similarity leads to a more efficient transfer of learning and, consequently, a better classification. Transfer learning is conducted via the domain adaptation technique known as Transfer Component Analysis (TCA), and cases with low similarity are compared to those with high similarity. Two datasets are analyzed. The first consists of a beam under different boundary conditions, and data are generated through numerical simulations. The second derives from an experimental setup of bolted joints with loosening damage. The proposed strategy, which uses a cosine-type similarity, is shown to improve the transfer learning classification.

References

1.
Farrar
,
C. R.
, and
Worden
,
K.
,
2012
,
Structural Health Monitoring: a Machine Learning Perspective
,
John Wiley & Sons
,
Chichester, West Sussex, UK
.
2.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
.
3.
Tan
,
C.
,
Sun
,
F.
,
Kong
,
T.
,
Zhang
,
W.
,
Yang
,
C.
, and
Liu
,
C.
,
2018
, “
A survey on deep transfer learning
,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, 11141 LNCS, pp.
270
279
.
4.
Kouw
,
W. M.
, and
Loog
,
M.
,
2019
, An Introduction to Domain Adaptation and Transfer Learning.
5.
Saied
,
M.
,
Ali
,
R.
,
Francis
,
C.
,
Radilla
,
G.
, and
Noun
,
Z.
,
2024
, “
Learning-based Approach for Automated Surface Inspection with Industrial Tomography Imaging
,”
ASME J. Nondestructive Evaluat., Diagnostics Prognostics Eng. Syst.
,
7
(
3
).
6.
Zhao
,
H.
,
Liu
,
Q.
, and
Yang
,
Y.
,
2018
, “
Transfer learning with ensemble of multiple feature representations
,” In
2018 IEEE 16th International Conference on Software Engineering Research, Management and Applications (SERA)
, pp.
54
61
.
7.
Yao
,
Y.
, and
Doretto
,
G.
,
2010
, “
Boosting for Transfer Learning with Multiple Sources
,” In
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, pp.
1855
1862
.
8.
Bull
,
L.
,
Gardner
,
P.
,
Dervilis
,
N.
,
Papatheou
,
E.
,
Haywood-Alexander
,
M.
,
Mills
,
R.
, and
Worden
,
K.
,
2021
, “
On the Transfer of Damage Detectors Between Structures: An Experimental Case Study
,”
J. Sound. Vib.
,
501
, p.
116072
.
9.
Mihalkova
,
L.
,
Huynh
,
T.
, and
Mooney
,
R. J.
,
2007
, “
Mapping and Revising Markov Logic Networks for Transfer Learning
,”
Proceedings of the 22nd National Conference on Artificial Intelligence - Volume 1, AAAI’07, AAAI Press
, pp.
608
614
.
10.
Pan
,
S. J.
,
Tsang
,
I. W.
,
Kwok
,
J. T.
, and
Yang
,
Q.
,
2011
, “
Domain Adaptation Via Transfer Component Analysis
,”
IEEE Trans. Neural Netw.
,
22
(
2
), pp.
199
210
.
11.
Farrar
,
C. R.
, and
Worden
,
K.
,
2007
, “
An Introduction to Structural Health Monitoring
,”
Philosophical Trans. R. Soc. A
,
365
(
1851
), pp.
303
315
.
12.
Gardner
,
P.
,
Liu
,
X.
, and
Worden
,
K.
,
2020
, “
On the Application of Domain Adaptation in Structural Health Monitoring
,”
Mech. Syst. Signal. Process.
,
138
(
106550
), pp.
1
24
.
13.
Ritto
,
T.
,
Worden
,
K.
,
Wagg
,
D.
,
Rochinha
,
F.
, and
Gardner
,
P.
,
2022
, “
A Transfer Learning-based Digital Twin for Detecting Localised Torsional Friction in Deviated Wells
,”
Mech. Syst. Signal. Process.
,
173
(
109000
), pp.
1
14
.
14.
da Silva
,
S.
,
Yano
,
M. O.
, and
Gonsalez-Bueno
,
C. G.
,
2021
, “
Transfer Component Analysis for Compensation of Temperature Effects on the Impedance-based Structural Health Monitoring
,”
J. Nondestructive Evaluat.
,
40
(
3
), p.
64
.
15.
Omori Yano
,
M.
,
da Silva
,
S.
,
Figueiredo
,
E.
, and
Giacon Villani
,
L. G.
,
2023
, “
Damage Quantification Using Transfer Component Analysis Combined with Gaussian Process Regression
,”
Struct. Health. Monit.
,
22
(
2
), pp.
1290
1307
.
16.
Figueiredo
,
E.
,
Yano
,
M. O.
,
da Silva
,
S.
,
Moldovan
,
I.
, and
Bud
,
M. A.
,
2023
, “
Transfer Learning to Enhance the Damage Detection Performance in Bridges when Using Numerical Models
,”
J. Bridge Eng.
,
28
(
1
), p.
04022134
.
17.
da Silva
,
S.
,
Yano
,
M. O.
,
de Oliveira Teloli
,
R.
,
Chevallier
,
G.
, and
Ritto
,
T. G.
,
2024
, “
Domain Adaptation of Population-based of Bolted Joint Structures for Loss Detection of Tightening Torque
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst., Part B: Mech. Eng.
,
10
(
1
), p. 011102.
18.
Han
,
J.
,
Kamber
,
M.
, and
Pei
,
J.
,
2012
, “
2 - getting to know your data
,” In
Data Mining (Third Edition)
,
J.
Han
,
M.
Kamber
, and
J.
Pei
, eds., third edition ed.,
The Morgan Kaufmann Series in Data Management Systems
.
Morgan Kaufmann, Boston
, pp.
39
82
.
19.
Gardner
,
P.
,
Liu
,
X.
, and
Worden
,
K.
,
2020
, “
On the Application of Domain Adaptation in Structural Health Monitoring
,”
Mech. Syst. Signal. Process.
,
138
(
106550
), pp.
1
24
.
20.
Omori Yano
,
M.
,
da Silva
,
S.
,
Figueiredo
,
E.
, and
Giacon Villani
,
L. G.
,
2022
, “
Damage Quantification Using Transfer Component Analysis Combined with Gaussian Process Regression
,”
Struct. Health. Monit.
,
22
(
2
), p.
14759217221094500
.
21.
Xie
,
J.
,
Zhang
,
L.
,
Duan
,
L.
, and
Wang
,
J.
,
2016
, “
On Cross-domain Feature Fusion in Gearbox Fault Diagnosis Under Various Operating Conditions Based on Transfer Component Analysis
,” 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), Ottawa, ON, Canada, IEEE, pp.
1
6
.
22.
Schölkopf
,
B.
,
Smola
,
A.
, and
Müller
,
K.-R.
,
1997
, “
Kernel Principal Component Analysis
,” International conference on artificial neural networks,
Springer
,
Lausanne, Switzerland
, pp.
583
588
.
23.
Schölkopf
,
B.
,
2000
, “
The Kernel Trick for Distances
,” Proceedings of the 13th International Conference on Neural Information Processing Systems, NIPS’00,
MIT Press
,
Denver CO
, pp.
283
289
.
24.
Ekwaro-Osire
,
S.
,
Gandur
,
N. L.
, and
Lopez-Salazar
,
C. A.
,
2023
, “
Incipient Fault Point Detection Based on Multiscale Diversity Entropy
,”
ASME J. Nondestructive Evaluat., Diagnostics Prognostics Eng. Syst.
,
6
(
3
), p.
034501
.
25.
Thomas
,
J.
, and
Abbas
,
B.
,
1975
, “
Finite Element Model for Dynamic Analysis of Timoshenko Beam
,”
J. Sound Vib.
,
41
(
3
), pp.
291
299
.
26.
Inman
,
D. J.
, and
Singh
,
R. C.
,
2008
,
Engineering Vibration
, 3rd ed.,
Prentice Hall Englewood Cliffs
,
NJ
.
27.
Ritto
,
T.
,
Sampaio
,
R.
, and
Aguiar
,
R.
,
2016
, “
Uncertain Boundary Condition Bayesian Identification From Experimental Data: A Case Study on a Cantilever Beam
,”
Mech. Syst. Signal. Process
,
68-69
, pp.
176
188
.
28.
Geradin
,
M.
, and
Rixen
,
D. J.
,
2015
, Mechanical Vibrations: Theory and Application to Structural Dynamics, 3rd ed., Mechanical Vibrations: Theory and Application to Structural Dynamics. Wiley.
29.
Ritto
,
T.
, and
Rochinha
,
F.
,
2021
, “
Digital Twin, Physics-based Model, and Machine Learning Applied to Damage Detection in Structures
,”
Mech. Syst. Signal. Process.
,
155
(
107614
), pp.
1
16
.
30.
Tahara
,
L.
,
2019
, “
Um estudo da influncia do comportamento não linear na anlise modal experimental
,” Master’s thesis, Universidade Estadual Paulista, Ilha Solteira, São Paulo.
31.
de Oliveira Teloli
,
R.
,
Butaud
,
P.
,
Chevallier
,
G.
, and
da Silva
,
S.
,
2020
, “
Good Practices for Designing and Experimental Testing of Dynamically Excited Jointed Structures: the Orion Beam
,”
Mech. Syst. Signal. Process
,
163
(
108172
), pp.
1
23
.
32.
de Oliveira Teloli
,
R.
,
da Silva
,
S.
,
Ritto
,
T. G.
, and
Chevallier
,
G.
,
2021
, “
Bayesian Model Identification of Higher-order Frequency Response Functions for Structures Assembled by Bolted Joints
,”
Mech. Syst. Signal. Process
,
151
(
107333
), pp.
1
17
.
33.
Miguel
,
L. P.
,
de O Teloli
,
R.
,
da Silva
,
S.
, and
Chevallier
,
G.
,
2022
, “
Probabilistic Machine Learning for Detection of Tightening Torque in Bolted Joints
,”
Struct. Health. Monit.
,
21
(
5
), pp.
2136
2151
.
34.
Rizzo
,
P.
,
Enshaeian
,
A.
, and
Ghahremani
,
B.
,
2023
, “
Diagnostics of Concrete Box Beam Bridges Using Wireless Sensors and Finite Element Analysis
,”
ASME J. Nondestructive Evaluat., Diagnostics Prognost. Eng. Syst.
,
7
(
1
), p.
011003
.
You do not currently have access to this content.