Abstract

Performance of two distinct fuel systems, U-7Mo fuel in Zircaloy (Zry-4) cladding and U-10Mo fuel in aluminum (Al6061-O) cladding was studied. First, a mini plate with Zry-4 cladding from a previous irradiation experiment was evaluated via finite element analysis (FEA). By using the same plate geometry and irradiation conditions, another plate consisting of U-10Mo fuel and Al6061-O cladding was simulated. The results were then comparatively evaluated to explore the feasibility of employing Zry-4 as an alternative cladding. Simulations indicated the Zircaloy cladding plate would operate roughly 50 °C hotter as compared with the Al alloy cladding plate. Larger deformations in the thickness direction for the plate with Zry cladding were noted. It was observed that the postfabrication stresses in the fuel would be relieved quickly in the reactor, regardless of cladding type. Although the fuel stresses would still develop at reactor shutdown, the fuel would be stress-free during the entire irradiation period for both cladding types. At shutdown, the plate with Zry cladding would have higher stresses due to higher operating temperatures. Similarly, the stresses after shutdown are higher in the foil core for the plates with Zry cladding. The Al cladding plate would have higher plastic strains as compared with the Zry cladding plate. The Zry cladding plate is significantly stiffer, causing higher stresses in the fuel zone and at the interface. Overall, employing Zry as an alternate cladding is not expected to produce a more favorable thermomechanical performance as compared to the performance of an Al alloy cladding plate.

References

1.
Pasqualini
,
E. E.
,
Robinson
,
A. B.
,
Porter
,
D. L.
,
Wachs
,
D. M.
, and
Finlay
,
M. R.
,
2016
,
Fabrication and Testing of U-7Mo Monolithic Fuel Plate With Zircaloy Cladding
,”
J. Nucl. Mater.
,
479
, pp.
402
410
.10.1016/j.jnucmat.2016.07.034
2.
Lopes
,
D. A.
,
Zimmermann
,
A. J. O.
,
Silva
,
S. L.
, and
Piqueira
,
J. R. C.
,
2016
, “
Thermal Cycling Effect in U-10Mo/Zry-4 Monolithic Nuclear Fuel
,”
J. Nucl. Mater.
,
473
, pp.
136
142
.10.1016/j.jnucmat.2016.02.029
3.
Ozaltun
,
H.
,
2016
, “
Effects of Cladding Material on Irradiation Performance of Monolithic Mini-Plates
,”
ASME
Paper No. ICONE24-60120.10.1115/ICONE24-60120
4.
Perez
,
D. M.
,
Lillo
,
M. A.
,
Chang
,
G. S.
,
Roth
,
G. A.
,
Woolstenhulme
,
N. E.
, and
Wachs
,
D. M.
,
2011
, “
RERTR-7 Irradiation Summary Report
,”
Idaho National Laboratory
,
Idaho Falls, ID
,
Report No. INL/EXT-11-24283.
5.
Beghi
,
G.
,
1968
, “
Gamma Phase Uranium-Molybdenum Fuel Alloys
,”
European Atomic Energy Community - EURATOM
,
Ispra, Italy
,
EURATOM Report No: EUR-4053e.
6.
Klein
,
J. L.
,
1962
, “
Uranium and Its Alloys
,”
Nuclear Reactor Fuel Elements: Metallurgy and Fabrication
,
A. R.
Kaufmann
, ed.,
Wiley
,
New York
, p.
31
.
7.
Farkas
,
M.
,
1967
, “
Mechanical and Physical Properties of Fuels and Cladding Materials With Potential for Use in Brookhaven's Pulsed Fast Reactors
,”
Battelle Memorial Institute
,
Columbus, OH
,
Report No. BMI-X-455.
8.
Cunningham
,
M. E.
, and
Peddicord
,
K. L.
,
1981
, “
Heat Conduction in Spheres Packed in an Infinite Regular Cubical Array
,”
Int. J. Heat Mass Transfer
,
24
(
7
), pp.
1081
1088
.10.1016/0017-9310(81)90157-5
9.
Kim
,
Y. S.
, and
Hofman
,
G. L.
,
2011
, “
Fission Product Induced Swelling of U–Mo Alloy Fuel
,”
J. Nucl. Mater.
,
419
(
1–3
), pp.
291
301
.10.1016/j.jnucmat.2011.08.018
10.
Atomic Power Development Associates, Inc
,
1959
, “
Enrico Fermi Atomic Power Plant
,”
United States Atomic Energy Commission. Technical Information Service
,
Detroit, MI
,
Report No. APDA-124.
11.
Waldron
,
M. B.
,
Burnett
,
R. C.
, and
Pugh
,
S. F.
,
1958
, “
The Mechanical Properties of Uranium-Molybdenum Alloys
,”
United Kingdom Atomic Energy Authority
,
Harwell, Berkshire, UK
,
Report No. AERE M/R 2554.
12.
Boudouresques
,
B.
, and
Englander
,
M.
,
1959
, “
Strength and Creep of Uranium Alloys, Report 1241
,”
Prog. Nucl. Energy Ser.
,
2
, pp.
621
631
.https://inis.iaea.org/search/search.aspx?orig_q=RN:49031271
13.
Gates
,
J. E.
,
Bodine
,
E. G.
,
Bell
,
J. C.
,
Bauer
,
A. A.
, and
Calkins
,
G. D.
,
1958
, “
Stress-Strain Properties of Irradiated Uranium-10 Molybdenum
,”
Battelle Memorial Institute, Columbus, OH
,
Report No. BMI-APDA-638.
14.
Kim
,
Y. S.
,
Hofman
,
G. L.
,
Cheon
,
J. S.
,
Robinson
,
A. B.
, and
Wachs
,
D. M.
,
2013
, “
Fission Induced Swelling and Creep of U–Mo Alloy Fuel
,”
J. Nucl. Mater.
,
437
(
1–3
), pp.
37
46
.10.1016/j.jnucmat.2013.01.346
15.
SCDAP/RELAP5-3D Code Manual
- Vol. 4,
2003
, “
MATPRO—A Library of Material Properties for LWR Accident Analysis, INEEL/EXT-02-00589, Rev.2.2
,”
Idaho National Laboratory
,
Idaho Falls, ID
.
16.
Schwenk
,
E. B.
,
Wheeler
,
K. R.
,
Shearer
,
G. D.
, and
Webster
,
R. T.
,
1978
, “
Poisson's Ratio in Zircaloy-4 Between 24 °C and 316 °C
,”
J. Nucl. Mater.
,
73
(
1
), pp.
129
131
.10.1016/0022-3115(78)90491-9
17.
Whitmarsh
,
C. L.
,
1962
, “
Review of Zircaloy-2 and Zircaloy-4 Properties Relevant to N.S.Savannah Reactor Design
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
,
Report No. ORNL-3281.
18.
Luscher
,
W. G.
, and
Geelhood
,
K. J.
,
2010
, “
Comparisons Between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO
,”
U.S. Nuclear Regulatory Commission
,
Richland, WA
,
Report No. NUREG/CR-7024, PNNL 19417.
19.
Limback
,
M.
, and
Andersson
,
T.
,
1996
, “
A Model for Analysis of the Effect of Final Annealing on the In- and Out-of-Reactor Creep Behavior of Zircaloy Cladding
,”
Zirconium in the Nuclear Industry: Eleventh International Symposium
,
ASTM - American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
448
468
, Standard No. ASTM STP 1295.
20.
Matsuo
,
Y.
,
1987
, “
Thermal Creep of Zircaloy-4 Cladding Under Internal Pressure
,”
J. Nucl. Sci. Technol.
,
24
(
2
), pp.
111
119
.10.1080/18811248.1987.9735783
21.
Franklin
,
D. G.
,
Lucas
,
G. E.
, and
Bement
,
A. L.
,
1983
, Creep of Zirconium Alloys in Nuclear Reactors,
American Society for Testing and Materials
,
West Conshohocken, PA
, Standard No. ASTM STP 815.
22.
IAEA - International Atomic Energy Agency
,
2006
, “
Thermophysical Properties Database of Materials for LWR and HWRs
,”
IAEA - International Atomic Energy Agency
,
Vienna, Austria
,
Report No. IAEA-TECDOC-1496.
23.
Lloyd
,
R.
,
2011
, “
Evaluation of 6061 Al Alloy Mechanical Properties of Fuel Plate Cladding: HIP-Bonded Fuel Plates
,”
Idaho National Laboratory
,
Idaho Falls, ID
,
Report No. TEV 1758 R0.
24.
Rabin
,
B.
, Meyer, M., Cole, J., Glagolenko, I., Jones, W., Jue, J-F., Keiser D., et al.,
2020
, “
Preliminary Report on U Mo Monolithic Fuel for Research Reactors, Rev.04
,”
Idaho National Laboratory
,
Idaho Falls, ID
,
Report No. INL EXT 17-40975
.
25.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties, REFPROP, Version 9.0, NIST, Standard Reference Data Program
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.
26.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2001
,
Introduction to Heat Transfer
, 4th ed.,
Wiley
,
New York
, pp.
412
417
.
27.
Ozaltun
,
H.
,
Herman Shen
,
M.-H.
,
Medvedev
,
P.
, and
Miller
,
S. J.
,
2013
, “
Computational Evaluation for the Mechanical Behavior of U10Mo Fuel Mini Plates Subject to Thermal Cycling
,”
Nucl. Eng. Des.
,
254
, pp.
165
178
.10.1016/j.nucengdes.2012.09.008
28.
Ozaltun
,
H.
,
Medvedev
,
P. G.
, and
Rabin
,
B. H.
,
2018
, “
Assessment of Failure Modes of Monolithic Fuel Plates
,”
ASME
Paper No. ICONE26-82437.10.1115/ICONE26-82437
29.
Medvedev
,
P. G.
,
Ozaltun
,
H.
,
Robinson
,
A.
, and
Rabin
,
B. H.
,
2018
, “
Shutdown-Induced Tensile Stress in Monolithic Miniplates as a Possible Cause of Plate Pillowing at Very High Burnup
,”
Nucl. Eng. Des.
,
328
, pp.
161
165
.10.1016/j.nucengdes.2018.01.004
30.
Ozaltun
,
H.
,
2021
, “
Evaluation of Interface Stresses and Cladding-Cladding Delamination Failures in U-Mo Fuel Plates
,”
ASME
Paper No. ICONE28-65840.10.1115/ICONE28-65840
31.
Geelhood
,
K.
,
Beyer
,
J. C.
, and
Luscher
,
W. G.
,
2008
, “
PNNL Stress/Strain Correlation for Zircaloy
,”
Pacific Northwest National Laboratory
,
Richland, WA
,
Report No. PNNL-17700.
32.
Polkinghorne
,
S. T.
, and
Lacy
,
J. M.
,
1991
, “
Thermo-Physical and Mechanical Properties of ATR Core Materials
,”
EG&G
,
Idaho Falls, ID
,
Report No. PG-T-91-031.
You do not currently have access to this content.