Abstract

Liquid metals (LMs) exhibit several key characteristics justifying their utilization as coolants and breeders for nuclear fusion reactors and advanced fission reactors. In fusion reactors, the LMs confront an exorbitantly high flow retarding force, due to the magneto-hydro-dynamics (MHD) effect, imposing significant demands on the pumping power and designs of ancillary coolant systems. Corrosion of structural materials leading to activated corrosion products and coolant chemistry control are some of the vital issues common to both fusion and fission reactors employing liquid lead (Pb) and its alloys. To address these concerns, different technological solutions such as flow channel inserts (FCIs) and high temperature compatible corrosion resistant coatings are being investigated to provide a chemical and/or electrical isolation between the LM and structural material for advanced reactors. In this study, three different prototype geometries (circular, square, and 90 deg bend) of steel-insulator-steel sandwich FCIs are fabricated for fusion reactor applications and an extensive characterization of the electrical insulation is performed over an operating temperature range of 100 °C–600 °C. Welding trials and pneumatic pressure tests up to 10 kg/cm2 (g) are performed on the assemblies to validate the electrical and mechanical integrity over typical fusion reactor operational regime. This paper presents detailed fabrication aspects along with quantitative estimations of insulation filling density, electrical insulation performance and, for the first time, a detailed systematic study of insulation degradation resulting from the combined effects of tungsten inert gas (TIG) welding, exposure to pressure and machining operations on these FCIs. The paper also provides critical details derived from the metallurgical examinations and visual observations from the destructive tests executed on the prototypes. Further, from an implementation perspective toward Lead-cooled Fast Reactors (LFRs), a preliminary feasibility assessment of the α-Al2O3/AlPO4 coating is performed through thin film deposition trials on planar and non-planar substrates followed by mechanical characterizations, such as coating thickness, surface roughness, adhesion strength and microhardness. Metallurgical analyses are presented and discussed to assess Pb ingress after 700 h of continuous exposure to molten Pb alloy at 300 °C–400 °C.

References

1.
Tang
,
T.
,
Zhang
,
Z.
,
Meng
,
J.-B.
, and
Luo
,
D.-L.
,
2009
, “
Synthesis and Characterization of Lithium Silicate Powders
,”
Fusion Eng. Des.
,
84
(
12
), pp.
2124
2130
.10.1016/j.fusengdes.2009.02.017
2.
Malang
,
S.
,
Borgstedt
,
H. U.
,
Farnum
,
E. H.
,
Natesan
,
K.
, and
Vitkovski
,
I. V.
,
1995
, “
Development of Insulating Coatings for Liquid Metal Blankets
,”
Fusion Eng. Des.
,
27
(
1–2
), pp.
570
586
.10.1016/0920-3796(94)00322-X
3.
Bohm
,
T. D.
,
Davis
,
A.
,
Harb
,
M. S.
,
Marriott
,
E. P.
, and
Wilson
,
P. P. H.
,
2019
, “
Initial Neutronics Investigation of a Liquid-Metal Plasma-Facing Fusion Nuclear Science Facility
,”
Fusion Sci. Technol.
,
75
(
6
), pp.
429
437
.10.1080/15361055.2019.1600930
4.
Moriyama
,
H.
,
Tanaka
,
S.
,
Sze
,
D. K.
,
Reimann
,
J.
, and
Terlain
,
A.
,
1995
, “
Tritium Recovery From Liquid Metals
,”
Fusion Eng. Des.
,
28
(
1–2
), pp.
226
239
.10.1016/0920-3796(94)00341-4
5.
Martelli
,
D.
,
Venturini
,
A.
, and
Utili
,
M.
,
2019
, “
Literature Review of Lead-Lithium Thermophysical Properties
,”
Fusion Eng. Des.
,
138
, pp.
183
195
.10.1016/j.fusengdes.2018.11.028
6.
Deoghar
,
A.
,
Saraswat
,
A.
,
Tailor
,
H.
,
Verma
,
S.
,
Gupta
,
S.
,
Sasmal
,
C. S.
,
Vasava
,
V.
, et al.,
2021
, “
Entrapment of Impurities Inside a Cold Trap: A Purification Process for Removal of Corrosion Impurities From Molten Pb-16Li
,”
Nucl. Fusion
,
61
(
11
), p.
116027
.10.1088/1741-4326/ac2520
7.
Bühler
,
L.
, and
Mistrangelo
,
C.
,
2018
, “
Pressure Drop and Velocity Changes in MHD Pipe Flows Due to a Local Interruption of the Insulation
,”
Fusion Eng. Des.
,
127
, pp.
185
191
.10.1016/j.fusengdes.2018.01.010
8.
Mistrangelo
,
C.
,
Bühler
,
L.
,
Koehly
,
C.
, and
Ricapito
,
I.
,
2021
, “
Magnetohydrodynamic Velocity and Pressure Drop in Manifolds of a WCLL TBM
,”
Nucl. Fusion
,
61
(
9
), p.
096037
.10.1088/1741-4326/ac18dc
9.
Tassone
,
A.
,
Siriano
,
S.
,
Caruso
,
G.
,
Utili
,
M.
, and
Nevo
,
A. D.
,
2020
, “
MHD Pressure Drop Estimate for the WCLL in-Magnet PbLi Loop
,”
Fusion Eng. Des.
,
160
, p.
111830
.10.1016/j.fusengdes.2020.111830
10.
Rhodes
,
T. J.
,
Smolentsev
,
S.
, and
Abdou
,
M.
,
2018
, “
Magnetohydrodynamic Pressure Drop and Flow Balancing of Liquid Metal Flow in a Prototypic Fusion Blanket Manifold
,”
Phys. Fluids
,
30
(
5
), p.
057101
.10.1063/1.5026404
11.
Malang
,
S.
,
Leroy
,
P.
,
Casini
,
G. P.
,
Mattas
,
R. F.
, and
Strebkov
,
Y.
,
1991
, “
Crucial Issues on Liquid Metal Blanket Design
,”
Fusion Eng. Des.
,
16
, pp.
95
109
.10.1016/0920-3796(91)90186-T
12.
Kirillov
,
I. R.
,
Reed
,
C. B.
,
Barleon
,
L.
, and
Miyazaki
,
K.
,
1995
, “
Present Understanding of MHD and Heat Transfer Phenomena for Liquid Metal Blankets
,”
Fusion Eng. Des.
,
27
(
1–2
), pp.
553
569
.10.1016/0920-3796(94)00357-D
13.
Borgstedt
,
H. U.
, and
Glasbrenner
,
H.
,
1995
, “
Development of a Direct Insulation Layer for a Self-Cooled Liquid Metal Fusion Reactor Blanket
,”
Fusion Eng. Des.
,
27
(
1–2
), pp.
659
662
.10.1016/0920-3796(94)00062-C
14.
Yang
,
Z.
,
Zhou
,
T.
,
Chen
,
H.
, and
Ni
,
M.
,
2010
, “
Numerical Study of MHD Pressure Drop in Rectangular Ducts With Insulating Coatings
,”
Fusion Eng. Des.
,
85
(
10–12
), pp.
2059
2064
.10.1016/j.fusengdes.2010.07.024
15.
Natesan
,
K.
,
Reed
,
C. B.
, and
Mattas
,
R. F.
,
1995
, “
Assessment of Alkali Metal Coolants for the ITER Blanket
,”
Fusion Eng. Des.
,
27
(
1–2
), pp.
457
466
.10.1016/0920-3796(94)00158-4
16.
Muroga
,
T.
,
2012
,
4.21 - Ceramic Coatings as Electrical Insulators in Fusion Blankets, Comprehensive Nuclear Materials
,
Rudy J. M.
Konings
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
691
699
.
17.
Norizuki
,
R.
,
Tanaka
,
T.
,
Akahoshi
,
E.
,
Kimura
,
K.
,
Nakamura
,
K.
, and
Chikada
,
T.
,
2021
, “
Fabrication and Characterization of Ceramic-Iron Joint Coating for Electrical Insulation
,”
Fusion Eng. Des.
,
168
, p.
112438
.10.1016/j.fusengdes.2021.112438
18.
Ueki
,
Y.
,
Kunugi
,
T.
,
Morley
,
N. B.
, and
Abdou
,
M. A.
,
2010
, “
Electrical Insulation Test of Alumina Coating Fabricated by Sol–Gel Method in Molten PbLi Pool
,”
Fusion Eng. Des.
,
85
(
10–12
), pp.
1824
1828
.10.1016/j.fusengdes.2010.06.004
19.
Natesan
,
K.
,
Reed
,
C. B.
,
Uz
,
M.
,
Park
,
J. H.
, and
Smith
,
D. L.
, “
Electrically Insulating Coatings for V-Li Self-Cooled Blanket in a Fusion System, Energy Technology Division
,”
Argonne National Laboratory
, Argonne, IL,
Technical Report
.10.2172/755850
20.
Glasbrenner
,
H.
,
Borgstedt
,
H. U.
, and
Peric
,
Z.
,
1995
, “
Compatibility Tests of Insulating Materials in Pb-17Li Alloy
,”
Liquid Metal Systems
,
U.
Borgstedt
and
G.
Frees
eds.,
Springer
,
Boston, MA
.
21.
Li
,
Y.
,
Ke
,
C.
,
Liu
,
X.
,
Gou
,
F.
,
Duan
,
X.
, and
Zhao
,
Y.
,
2018
, “
Analysis Liquid Lithium Corrosion Resistance of Er2O3 Coating Revealed by LIBS Technique
,”
Fusion Eng. Des.
,
136
, pp.
1640
1646
.10.1016/j.fusengdes.2018.07.001
22.
Hishinuma
,
Y.
,
Tanaka
,
T.
,
Tanaka
,
T.
,
Nagasaka
,
T.
,
Tasaki
,
Y.
,
Sagara
,
A.
, and
Muroga
,
T.
,
2011
, “
Er2O3 Coating Synthesized With MOCVD Process on the Large Interior Surface of the Metal Tube
,”
Fusion Eng. Des.
,
86
(
9–11
), pp.
2530
2533
.10.1016/j.fusengdes.2011.04.043
23.
Muroga
,
T.
, and
Pint
,
B. A.
,
2010
, “
Progress in the Development of Insulator Coating for Liquid Lithium Blankets
,”
Fusion Eng. Des.
,
85
(
7–9
), pp.
1301
1306
.10.1016/j.fusengdes.2010.03.025
24.
Muñoz
,
P.
,
Hernández
,
T.
,
García-Cortés
,
I.
,
Sánchez
,
F. J.
,
Maira
,
A.
,
Iadicicco
,
D.
,
Vanazzi
,
M.
,
Utili
,
M.
,
Di Fonzo
,
F.
, and
Moroño
,
A.
,
2018
, “
Radiation Effects on Deuterium Permeation for PLD Alumina Coated Eurofer Steel Measured During 1.8 MeV Electron Irradiation
,”
J. Nucl. Mater.
,
512
, pp.
118
125
.10.1016/j.jnucmat.2018.10.008
25.
Pint
,
B. A.
,
Moser
,
J. L.
, and
Tortorelli
,
P. F.
,
2006
, “
Liquid Metal Compatibility Issues for Test Blanket Modules
,”
Fusion Eng. Des.
,
81
(
8–14
), pp.
901
908
.10.1016/j.fusengdes.2005.07.010
26.
Iadicicco
,
D.
,
Vanazzi
,
M.
,
García Ferré
,
F.
,
Paladino
,
B.
,
Bassini
,
S.
,
Utili
,
M.
, and
Di Fonzo
,
F.
,
2019
, “
Multifunctional Nanoceramic Coatings for Future Generation Nuclear Systems
,”
Fusion Eng. Des.
,
146
, pp.
1628
1632
. Part B10.1016/j.fusengdes.2019.03.004
27.
Carmona Gazquez
,
M.
,
Bassini
,
S.
,
Hernandez
,
T.
, and
Utili
,
M.
,
2017
, “
Al2O3 Coating as Barrier Against Corrosion in Pb-17Li
,”
Fusion Eng. Des.
,
124
, pp.
837
840
.10.1016/j.fusengdes.2017.03.070
28.
Vassallo
,
E.
,
Pedroni
,
M.
,
Spampinato
,
V.
,
Deambrosis
,
S. M.
,
Miorin
,
E.
,
Ricci
,
E.
, and
Zin
,
V.
,
2018
, “
Effect of Alumina Coatings on Corrosion Protection of Steels in Molten Lead
,”
J. Vac. Sci. Technol. B
,
36
(
1
), p.
01A105
.10.1116/1.4993286
29.
Wulf
,
S.-E.
,
Krauss
,
W.
, and
Konys
,
J.
,
2018
, “
Long-Term Corrosion Behavior of Al-Based Coatings in Flowing Pb–15.7Li, Produced by Electrochemical ECX Process
,”
Nucl. Mater. Energy
,
16
, pp.
158
162
.10.1016/j.nme.2018.06.019
30.
Saraswat
,
A.
,
Sasmal
,
C.
,
Prajapati
,
A.
,
Bhattacharyay
,
R.
,
Chaudhuri
,
P.
, and
Gedupudi
,
S.
,
2022
, “
Experimental Investigations on Electrical-Insulation Performance of Al2O3 Coatings for High Temperature PbLi Liquid Metal Applications
,”
Ann. Nucl. Energy
,
167
, p.
108856
.10.1016/j.anucene.2021.108856
31.
Jamnapara
,
N. I.
,
Sree
,
A. S.
,
Kumar
,
E. R.
,
Mukherjee
,
S.
, and
Khanna
,
A. S.
,
2014
, “
Compatibility Study of Plasma Grown Alumina Coating With Pb–17Li Under Static Conditions
,”
J. Nucl. Mater.
,
455
(
1–3
), pp.
612
617
.10.1016/j.jnucmat.2014.08.046
32.
Sree
,
A. S.
, and
Kumar
,
E. R.
,
2014
, “
Effect of Heat Treatment and Silicon Concentration on Microstructure and Formation of Intermetallic Phases on Hot Dip Aluminized Coating on Indian RAFMS
,”
Fusion Sci. Technol.
,
65
(
2
), pp.
282
291
.10.13182/FST13-673
33.
Xiang
,
X.
,
Wang
,
X.
,
Zhang
,
G.
,
Tang
,
T.
, and
Lai
,
X.
,
2015
, “
Preparation Technique and Alloying Effect of Aluminide Coatings as Tritium Permeation Barriers: A Review
,”
Int. J. Hydrogen Energy
,
40
(
9
), pp.
3697
3707
.10.1016/j.ijhydene.2015.01.052
34.
Genova
,
V.
,
Paglia
,
L.
,
Pulci
,
G.
,
Bartuli
,
C.
, and
Marra
,
F.
,
2021
, “
Diffusion Aluminide Coatings for Hot Corrosion and Oxidation Protection of Nickel-Based Superalloys: Effect of Fluoride-Based Activator Salts
,”
Coatings
,
11
(
4
), p.
412
.10.3390/coatings11040412
35.
Norajitra
,
P.
,
Basuki
,
W. W.
,
Gonzalez
,
M.
,
Rapisarda
,
D.
,
Rohde
,
M.
, and
Spatafora
,
L.
,
2015
, “
Development of Sandwich Flow Channel Inserts for an EU Demo Dual Coolant Blanket Concept
,”
Fusion Sci. Technol.
,
68
(
3
), pp.
501
506
.10.13182/FST14-932
36.
Koehly
,
C.
, and
Bühler
,
L.
,
2017
, “
Fabrication Issues of Sandwich-Like Flow Inserts for Circular Pipes
,”
Fusion Sci. Technol.
,
72
(
4
), pp.
660
666
.10.1080/15361055.2017.1350477
37.
Urgorri
,
F. R.
,
Smolentsev
,
S.
,
Fernández-Berceruelo
,
I.
,
Rapisarda
,
D.
,
Palermo
,
I.
, and
Ibarra
,
A.
,
2018
, “
Magnetohydrodynamic and Thermal Analysis of PbLi Flows in Poloidal Channels With Flow Channel Insert for the EU-DCLL Blanket
,”
Nucl. Fusion
,
58
(
10
), p.
106001
.10.1088/1741-4326/aad299
38.
Koehly
,
C.
,
Neuberger
,
H.
, and
Bühler
,
L.
,
2019
, “
Fabrication of Thin-Walled Fusion Blanket Components Like Flow Channel Inserts by Selective Laser Melting
,”
Fusion Eng. Des.
,
143
, pp.
171
179
.10.1016/j.fusengdes.2019.03.184
39.
Giulio
,
D. D.
,
Suarez
,
D.
,
Batet
,
L.
,
de Les Valls
,
E. M.
, and
Savoldi
,
L.
,
2020
, “
Analysis of Flow Channel Insert Deformations Influence on the Liquid Metal Flow in DCLL Blanket Channels
,”
Fusion Eng. Des.
,
157
, p.
111639
.10.1016/j.fusengdes.2020.111639
40.
Malang
,
S.
,
Tillack
,
M.
,
Wong
,
C. P. C.
,
Morley
,
N.
, and
Smolentsev
,
S.
,
2011
, “
Development of the Lead Lithium (DCLL) Blanket Concept
,”
Fusion Sci. Technol.
,
60
(
1
), pp.
249
256
.10.13182/FST10-212
41.
Bühler
,
L.
,
Mistrangelo
,
C.
, and
Brinkmann
,
H.-J.
,
2020
, “
Experimental Investigation of Liquid Metal MHD Flow Entering a Flow Channel Insert
,”
Fusion Eng. Des.
,
154
, p.
111484
.10.1016/j.fusengdes.2020.111484
42.
González
,
M.
, and
Kordac
,
M.
,
2020
, “
Electrical Resistivity Behaviour of Alumina Flow Channel Inserts in PbLi
,”
Fusion Eng. Des.
,
159
, p.
111761
.10.1016/j.fusengdes.2020.111761
43.
Zhang
,
W.
,
Zhu
,
C.
,
Yang
,
J.
,
Chen
,
Q.
,
Wang
,
L.
,
Feng
,
Y.
,
Feng
,
K.
,
Liao
,
J.
,
Yang
,
Y.
,
Liu
,
N.
, and
Yang
,
J.
,
2021
, “
Chemical Compatibility Between the α-Al2O3 Tritium Permeation Barrier and Li4SiO4 Tritium Breeder
,”
Surf. Coat. Technol.
,
410
, p.
126960
.10.1016/j.surfcoat.2021.126960
44.
Yang
,
F.
,
Xiang
,
X.
,
Lu
,
G.
,
Zhang
,
G.
,
Tang
,
T.
,
Shi
,
Y.
, and
Wang
,
X.
,
2016
, “
Tritium Permeation Characterization of Al2O3/FeAl Coatings as Tritium Permeation Barriers on 321 Type Stainless Steel Containers
,”
J. Nucl. Mater.
,
478
, pp.
144
148
.10.1016/j.jnucmat.2016.06.001
45.
Wang
,
T.
,
Pu
,
J.
,
Bo
,
C.
, and
Jian
,
L.
,
2010
, “
Sol–Gel Prepared Al2O3 Coatings for the Application as Tritium Permeation Barrier
,”
Fusion Eng. Des.
,
85
(
7–9
), pp.
1068
1072
.10.1016/j.fusengdes.2010.01.021
46.
Zhang
,
W.
,
Deng
,
J.
,
Zhu
,
C.
,
Zhong
,
Y.
,
Yang
,
J.
,
Xin
,
H.
,
Liu
,
G.
, et al.,
2022
, “
Au-Ion Irradiation Effects on Microstructure and Deuterium Permeation Resistance of Al/Al2O3 Coating
,”
Nucl. Fusion
,
62
(
8
), p.
086039
.10.1088/1741-4326/ac74d0
47.
Yang
,
H.
,
Shao
,
Z.
,
Wang
,
W.
,
Ji
,
X.
, and
Li
,
C.
,
2020
, “
A Composite Coating of GO-Al2O3 for Tritium Permeation Barrier
,”
Fusion Eng. Des.
,
156
, p.
111689
.10.1016/j.fusengdes.2020.111689
48.
Shi
,
K.
,
Wang
,
L.
,
Zhang
,
W.
,
Chen
,
H.
,
Ning
,
Z.
,
Liao
,
J.
,
Yang
,
Y.
,
Liu
,
N.
, and
Yang
,
J.
,
2020
, “
Different Fe(Al) Transition Coatings on the Performance of Al2O3 Coating
,”
Fusion Eng. Des.
,
160
, p.
111835
.10.1016/j.fusengdes.2020.111835
49.
Tanaka
,
T.
,
Chikada
,
T.
,
Hinoki
,
T.
, and
Muroga
,
T.
,
2022
, “
Electrical Insulation Performances of Ceramic Materials Developed for Advanced Blanket Systems Under Intense Radiations
,”
J. Nucl. Mater.
,
569
, p.
153917
.10.1016/j.jnucmat.2022.153917
50.
Bhattacharyay
,
R.
,
Patel
,
A.
,
Kumar
,
E. R.
,
Swain
,
P. K.
,
Satyamurthy
,
P.
,
Kumar
,
S.
,
Ivanov
,
S.
,
Shishko
,
A.
,
Platacis
,
E.
, and
Ziks
,
A.
,
2013
, “
Liquid Metal MHD Experimental Activities for LLCB TBM Development
,”
Fusion Eng. Des.
,
88
(
9–10
), pp.
2244
2250
.10.1016/j.fusengdes.2013.05.086
51.
Swain
,
P. K.
,
Satyamurthy
,
P.
,
Bhattacharyay
,
R.
,
Patel
,
A.
,
Shishko
,
A.
,
Platacis
,
E.
,
Ziks
,
A.
,
Ivanov
,
S.
, and
Despande
,
A. V.
,
2013
, “
3D MHD Lead–Lithium Liquid Metal Flow Analysis and Experiments in a Test-Section of Multiple Rectangular Bends at Moderate to High Hartmann Numbers
,”
Fusion Eng. Des.
,
88
(
11
), pp.
2848
2859
.10.1016/j.fusengdes.2013.05.048
52.
Swain
,
P. K.
,
Shishko
,
A.
,
Mukherjee
,
P.
,
Tiwari
,
V.
,
Ghorui
,
S.
,
Bhattacharyay
,
R.
,
Patel
,
A.
, et al.,
2018
, “
Numerical and Experimental MHD Studies of Lead-Lithium Liquid Metal Flows in Multichannel Test-Section at High Magnetic Fields
,”
Fusion Eng. Des.
,
132
, pp.
73
85
.10.1016/j.fusengdes.2018.04.125
53.
Megger
,
2006
, “
‘A Stitch In Time’ The Complete Guide to Electrical Insulation Testing
,” accessed Nov. 24, 2022, https://www.instrumart.com/assets/Megger-Guide-to-Insulation-Testing.pdf
54.
Fernández-Berceruelo
,
I.
,
Gonzalez
,
M.
,
Palermo
,
I.
,
Urgorri
,
F. R.
, and
Rapisarda
,
D.
,
2018
, “
Large-Scale Behavior of Sandwich-Like FCI Components Within the EU-DCLL Operational Conditions
,”
Fusion Eng. Des.
,
136
, pp.
633
638
.10.1016/j.fusengdes.2018.03.044
55.
Buhler
,
L.
,
Mistrangelo
,
C.
,
Brinkmann
,
H.-J.
, and
Koehly
,
C.
,
2018
, “
Pressure Distribution in MHD Flows in an Experimental Test-Section for a HCLL Blanket
,”
Fusion Eng. Des.
,
127
, pp.
168
172
.10.1016/j.fusengdes.2018.01.007
56.
Rhodes
,
T.
, and
Smolentsev
,
S.
,
2021
, “
Pressure Drop in a Prototypical 3D Magnetohydrodynamic Flow Across Contraction of a Fusion Blanket Manifold
,”
J. Nucl. Sci. Technol.
,
58
(
8
), pp.
908
917
.10.1080/00223131.2021.1892550
57.
Santos
,
P. S.
,
Santos
,
H. S.
, and
Toledo
,
S. P.
,
2000
, “
Standard Transition Aluminas. Electron Microscopy Studies
,”
Mater. Res.
,
3
(
4
), pp.
104
114
.10.1590/S1516-14392000000400003
58.
Zhang
,
K.
, and
Hatano
,
Y.
,
2010
, “
Preparation of Mg and Al Phosphate Coatings on Ferritic Steel by Wet-Chemical Method as Tritium Permeation Barrier
,”
Fusion Eng. Des.
,
85
(
7–9
), pp.
1090
1093
.10.1016/j.fusengdes.2010.02.012
59.
Zhao
,
Z.
,
Li
,
H.
,
Zheng
,
Z.
,
Zheng
,
L.
, and
Yan
,
Y.
,
2021
, “
Improved Thermal Shock and Corrosion Resistance of α-Al2O3/AlPO4 Coating With PAA Addition
,”
Surf. Coat. Technol.
,
414
, p.
127115
.10.1016/j.surfcoat.2021.127115
60.
Wang
,
L. Y.
,
Sun
,
F.
,
Zhou
,
Q. L.
,
Liao
,
D. M.
,
Jia
,
Y. Z.
,
Xue
,
L. H.
,
Li
,
H. P.
, and
Yan
,
Y. W.
,
2017
, “
Hydrogen Diffusion Mechanism on α-AlPO4 (0001)/α-Al2O3 (0001) Interface: A First-Principles Study
,”
Fusion Eng. Des.
,
125
, pp.
582
587
.10.1016/j.fusengdes.2017.05.039
61.
Smolentsev
,
S.
,
2021
, “
Physical Background, Computations and Practical Issues of the Magnetohydrodynamic Pressure Drop in a Fusion Liquid Metal Blanket
,”
Fluids
,
6
(
3
), p.
110
.10.3390/fluids6030110
62.
Allen
,
T. R.
, and
Crawford
,
D. C.
,
2007
, “
Lead-Cooled Fast Reactor Systems and the Fuels and Material Challenges
,”
Sci. Technol. Nucl. Install.
,
2007
, pp.
1
11
.10.1155/2007/97486
63.
Tarantino
,
M.
,
Angiolini
,
M.
,
Bassini
,
S.
,
Cataldo
,
S.
,
Ciantelli
,
C.
,
Cristalli
,
C.
,
Del Nevo
,
A.
, et al..,
2021
, “
Overview on Lead-Cooled Fast Reactor Design and Related Technologies Development in ENEA
,”
Energies
,
14
(
16
), p.
5157
.10.3390/en14165157
64.
Ferré
,
F. G.
,
Mairov
,
A.
,
Iadicicco
,
D.
,
Vanazzi
,
M.
,
Bassini
,
S.
,
Utili
,
M.
,
Tarantino
,
M.
, et al.,
2017
, “
Corrosion and Radiation Resistant Nanoceramic Coatings for Lead Fast Reactors
,”
Corros. Sci.
,
124
, pp.
80
92
.10.1016/j.corsci.2017.05.011
65.
Mehta
,
A.
,
Chakraborty
,
P.
,
Fotedar
,
R. K.
, and
Kumar
,
E. R.
,
2014
, “
Laboratory-Scale Development of Lead-Lithium Eutectic Alloy by Magnetohydrodynamic Stirring Technique
,”
Fusion Sci. Technol.
,
65
(
2
), pp.
299
307
.10.13182/FST13-659
66.
Garcinuno
,
B.
,
Fernandez-Saavedra
,
R.
,
Hernandez
,
T.
,
Gomez
,
M. B.
,
Quejido
,
A.
, and
Rapisarda
,
D.
,
2022
, “
Establishing Technical Specifications for PbLi Eutectic Alloy Analysis and Its Relevance in Fusion Applications
,”
Nucl. Mater. Energy
,
30
, p.
101146
.10.1016/j.nme.2022.101146
67.
Cruz
,
D.
,
Vila
,
R.
, and
Gomez-Ferrer
,
B.
,
2017
, “
Dielectric Properties of Alumina Ceramics for Fusion Applications
,”
Energetika
,
63
(
2
), pp.
39
45
.10.6001/energetika.v63i2.3518
68.
Howlader
,
M. M. R.
,
Kinoshita
,
C.
,
Shiiyama
,
K.
, and
Higuchi
,
T.
,
2001
, “
Role of Specimen Thickness on the Electrical Conductivity of Single Crystalline Alumina Under Electron Radiation
,”
J. Appl. Phys.
,
89
(
3
), pp.
1612
1618
.10.1063/1.1336516
69.
González de Vicente
,
S. M.
,
Hodgson
,
E. R.
, and
Shikama
,
T.
,
2017
, “
Functional Materials for Tokamak in-Vessel Systems-Status and Developments
,”
Nucl. Fusion
,
57
(
9
), p.
092009
.10.1088/1741-4326/aa6a5d
70.
J.
,
Jun
,
K. A.
,
Unocic
,
M. J.
,
Lance
,
H.
,
M.
,
Meyer
, III.
, and
B. A.
,
Pint
,
2020
, “
Compatibility of FeCrAlMo With Flowing PbLi at 500°–650 °C
,”
J. Nucl. Mater.
,
528
, p.
151847
.10.1016/j.jnucmat.2019.151847
71.
Romedenne
,
M.
,
Zhang
,
Y.
,
Su
,
Y.-F.
, and
Pint
,
B.
,
2023
, “
Evaluation of the Interaction Between SiC, Pre-Oxidized FeCrAlMo With Aluminized and Pre-Oxidized Fe-8Cr-2W in Flowing PbLi
,”
J. Nucl. Mater.
,
581
, p.
154465
.10.1016/j.jnucmat.2023.154465
You do not currently have access to this content.