Abstract

With the development of microreactors, a free-piston Stirling engine (FPSE) is an excellent candidate to support the development of microreactors. Based on the advantages of microreactors such as the compact design, long-lasting, highly-efficient, and remote-control operation, an FPSE can provide almost the same requirements. In this paper, a 20 kWel FPSE is proposed to support the development of microreactors. The calculation method was done through matlab to analyze the design with all the significant losses in the engine. Through various designs and operating conditions for the engine, the proposed design has 21.7% efficiency with a total output power of 20.7kWel. With the testing through different parameters in the engine, the current design is well optimized to balance all the constraints which offers a highly-efficient, compact design, and reliability. However, there is room for improvement during the design process, such as using the heat flux instead of a heat exchanger, robust foil for the regenerator, and simulation through 3D modeling to maximize the potential of the design. This study provides theoretical support for the design and analysis of the FPSE for microreactor applications.

References

1.
Idaho National Laboratory
,
2023
, “
Microreactors
,”
Idaho National Laboratory
, ID, accessed July 21, 2023, https://inl.gov/trending-topics/microreactors/
2.
Mazzetti
,
A.
,
Gianotti Pret
,
M.
,
Pinarello
,
G.
,
Celotti
,
L.
,
Piskacev
,
M.
, and
Cowley
,
A.
,
2018
, “
Heat to Electricity Conversion Systems for Moon Exploration Scenarios: A Review of Space and Ground Technologies
,”
Act Astronaut.
,
156
, pp.
162
186
.10.1016/j.actaastro.2018.09.025
3.
Perozziello
,
C.
,
Lavinia
,
G.
, and
Bianca
,
M. V.
,
2021
, “
Free-Piston Stirling Engine Technologies and Models: A Review
,”
Energies
,
14
(
21
), p.
7009
.10.3390/en14217009.
4.
Schreiber
,
J. G.
, and
Steven
,
M. G.
,
2013
, “
RE-1000 Free-Piston Stirling Engine Hydraulic Output System Description
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-TM-100185.
5.
Dyson
,
R.
,
Scott
,
W.
, and
Roy
,
T.
,
2004
, “
Review of Computational Stirling Analysis Methods
,”
Second International Energy Conversion Engineering Conference
, Providence, RI, Aug.
16
19
.
6.
Ni
,
M.
,
Bingwei
,
S.
,
Gang
,
X.
,
Hao
,
P.
,
Umair
,
S.
,
Shurong
,
W.
,
Zhongyang
,
L.
, and
Kefa
,
C.
,
2016
, “
Improved Simple Analytical Model and Experimental Study of a 100 W β-Type Stirling Engine
,”
Appl. Energy
,
169
, pp.
768
787
.10.1016/j.apenergy.2016.02.069
7.
Wilson
,
S.
,
Rodger
,
D.
,
Roy
,
T.
, and
Mounir
,
I.
,
2004
, “
Multi-D CFD Modeling of Free-Piston Stirling Convertor at NASA GRC
,”
AIAA
Paper No. 2004-5673
.10.2514/6.2004-5673
8.
Zare
,
S. H.
,
Shourangiz-Haghighi
,
A. R.
, and
Tavakolpour-Saleh
,
A. R.
,
2018
, “
Higher Order Modeling of a Free-Piston Stirling Engine: Analysis and Experiment
,”
Int. J. Energy Environ. Eng.
,
9
(
3
), pp.
273
293
.10.1007/s40095-018-0267-7
9.
Chi
,
C.
,
Jian
,
M.
,
Mingqiang
,
L.
, and
Guotong
,
H.
,
2019
, “
CFD Simulation and Investigation on the Operating Mechanism of a Beta-Type Free Piston Stirling Engine
,”
Appl. Therm. Eng.
,
166
, p.
114751
.10.1016/j.applthermaleng.2019.114751
10.
Carvajal
,
I.
,
Sanchez
,
F.
,
Omana
,
D.
, and
Miranda
,
S.
,
2014
, “
Methodology for Analysis of the Performance of Mesh-Type Regenerators
,”
Res. Appl. Mech. Eng.
,
3
, pp.
39
45
.https://www.researchgate.net/publication/272743495_Methodology_for_Analysis_of_the_Performance_of_Mesh-type_Regenerators
11.
Najafi
,
A.
,
Alireza
,
S. K.
,
Payam
,
Z.
,
Ali
,
M. K.
, and
Morteza
,
K.
,
2018
, “
Study the Heat Recovery Performance of Micro and Nano Metfoam Regenerators in Alpha Type Stirling Engine Conditions
,”
Nanoscale Microscale Thermophys. Eng.
,
22
(
2
), pp.
137
151
.10.1080/15567265.2018.1456581
12.
Gedeon
,
D.
,
2023
, “
What is Sage? Sage Software
,” Gedeon Associates, Athens, OH, accessed Sept. 29, http://sageofathens.com/
13.
Qiu
,
S.
, and
Laura
,
S.
,
2019
, “
Free-Piston Stirling Engine Generators
,”
Energy Conversion - Current Technologies and Future Trends
,
IntechOpen
, Rijeka, Croatia.
14.
Guillen
,
D. P.
, and
McDaniel
,
P. J.
,
2022
, “
An Evaluation of Power Conversion Systems for Land-Based Nuclear Microreactors: Can Aeroderivative Engines Facilitate Near-Term Deployment?
,”
Nucl. Eng. Technol.
,
54
(
4
), pp.
1482
1494
.10.1016/j.net.2021.10.010
15.
U.S. Energy Information Administration,
2019
, “
Electrical Power Annual
,”
U.S. Energy Information Administration
,
Washington, DC.
16.
Dhar
,
M.
,
Jones
,
D.
,
Huang
,
S.
, and
Rauch
,
J.
,
1987
, “
Design and Performance of a 25-KW Free-Piston Stirling Space Power Demonstrator Engine
,”
AIAA
Paper No. 879163.10.2514/6.1987-9163
17.
Phelps
,
A.
, and
McClure
,
P.
,
2023
, “
One to Ten Kilowatt Electric HEU Space Reactor
,” SpaceNukes, Los Alamos, NM, accessed Jan. 26, https://www.spacenukes.com/products
18.
Welch
,
N.
,
2023
, “
Stirling Convertor Sets 14-Year Continuous Operation Milestone
,” NASA, Washington, DC, accessed July 30, 2023, https://www.nasa.gov/centers-and-facilities/glenn/stirling-convertor-sets-14-year-continuous-operation-milestone/
19.
Wong
,
W.
,
Kyle
,
W.
,
Edward
,
S.
, and
Collins
,
J.
,
2012
, “
Pathfinding the Flight Advanced Stirling Convertor Design With the ASC-E3
,”
AIAA
Paper No. 2012-4251.10.2514/6.2012-4251
20.
Fan
,
S.
,
Minghai
,
L.
,
Sizhong
,
L.
,
Tong
,
Z.
,
Yupeng
,
H.
, and
Song
,
W.
,
2016
, “
Thermodynamic Analysis and Optimization of a Stirling Cycle for Lunar Surface Nuclear Power System
,”
Appl. Therm. Eng.
,
111
, pp.
60
67
.10.1016/j.applthermaleng.2016.08.053
21.
Dai
,
Z.
,
Chenglong
,
W.
,
Dalin
,
Z.
,
Wenxi
,
T.
,
Suizheng
,
Q.
, and
Su
,
G. H.
,
2021
, “
Design and Analysis of a Free-Piston Stirling Engine for Space Nuclear Power Reactor
,”
Nucl. Eng. Technol.
,
53
(
2
), pp.
637
646
.10.1016/j.net.2020.07.011
22.
Urieli
,
I.
,
1977
, “
A Computer Simulation of Stirling Cycle Machines
,”
A Computer Simulation of Stirling Cycle Machines
,
Intersociety Energy Conversion Engineering Conference
, Washington, DC, Aug. 28–Sept. 2.https://www.ohio.edu/mechanicalfaculty/urieli/Izzi_PhD_thesis.pdf
23.
Kankam
,
M. D.
,
Jeffrey
,
S. R.
, and
Walter
,
S.
,
1992
, “
Dynamic Analysis of Free-Piston Stirling Engine/Linear Alternator-Load System - Experimentally Validated
,” Intersociety Energy Conversion Engineering Conference, San Diego, CA, Aug. 3–7, Report No. NASA-TM-106034.
24.
Ahmadi
,
M. H.
,
Mohammad-Ali
,
A.
, and
Fathollah
,
P.
,
2016
, “
Thermal Models for Analysis of Performance of Stirling Engine: A Review
,”
Renewable Sustainable Energy Rev.
,
68
, pp.
168
184
.10.1016/j.rser.2016.09.033
25.
Bumataria
,
R.
, and
Nikul
,
P.
,
2013
, “
Stirling Engine Performance Prediction Using Schmidt Analysis by Considering Different Losses
,”
Int. J. Res. Eng. Technol.
,
02
(
08
), pp.
433
441
.10.15623/ijret.2013.0208067
26.
Kim
,
C. S.
,
1975
, “
Thermophysical Properties of Stainless Steels
,” Argonne National Laboratory, Lemont, IL,
Technical
Report No. ANL-75-55.10.2172/4152287
27.
Schreiber
,
J. G.
,
Geng
,
S. M.
, and
Lorenz
,
G. S.
,
1986
, “
Re-1000 Free-Piston Stirling Engine Sensitivity Test Results
,” NASA Lewis Research Center, Cleveland, OH,
Technical
Report No. DOE/NASA/1005-11.10.2172/532524
You do not currently have access to this content.