Abstract
A reliable high-temperature molten salt pump is critical for the development of Fluoride-salt-cooled, High-temperature Reactors (FHRs). By supporting the rotating journal, the appropriate journal bearing can ensure that the high-temperature molten salt pump runs smoothly and efficiently in the high-temperature fluoride salt over a long period of time. However, many bearing candidates served well for only a short period and experienced several issues. Moreover, the alignment of the molten salt pump journal bearings is a key factor for the molten salt pump's long-term steady running. In the long-term operation, a misalignment in the journal bearing can result in vibrations and excessive wear on the bearing surface of the molten salt pump. The journal bearing dynamic characteristics can be used to accurately assess the journal misalignment. Therefore, it is necessary to investigate the detailed journal-bearing dynamic behavior under the high-temperature hydrodynamic fluoride salt lubrication conditions for FHR applications. In this study, a small amplitude vibration is superimposed on a steady-running journal bearing to simulate the molten salt operating conditions. A Fortran 90 code has been written for the journal-bearing dynamic behavior analysis. The code was verified using the numerical data reported in the literature. The code is then employed to predict the dynamic coefficients of high-temperature fluoride salt hydrodynamic lubricated journal-bearing with various Sommerfeld numbers. These journal-bearing dynamic coefficients can be used to provide guidelines in the design of molten salt pumps.