Abstract

After the nuclear accident at the Fukushima Daiichi nuclear power plant, hydrogen generation has resurfaced as a key issue, with respect to its quantification in the simulation of severe accidents (SAs), because of the potential risk of deflagration or detonation, which would compromise the integrity of the plant facilities. Severe accident simulation codes may have different models to predict cladding oxidation rates and the consequent hydrogen generation. Thus, sensitivity and uncertainty analysis can be applied to determine which input variables of the code have a significant impact in the implemented models, and consequently on the overall predicted values of key figures of merit. In this work, the generation of hydrogen in the reactor core during a short-term station blackout (STSBO) is studied as a figure of merit for a boiling water reactor (BWR). The scope of the analysis is until the failure of the reactor pressure vessel (RPV). This study shows a sensitivity and uncertainty analysis through the complementary calculations of two methods: Chi-squared parameter and Pearson simple correlation coefficient (PSCC). The severe accident simulation code was MAAP 5.0.3 (Modular Accident Analysis Program, EPRI, USA) and the AZTUSIA code (AZtlan Tool for Uncertainty and SensItivity Analysis, Mexico) was used as the statistical tool for the sensitivity and uncertainty analysis. Ten uncertain parameters were chosen, of which two are MAAP models options, and the values were generated via the simple random Monte Carlo technique. The results show that the Chi-squared parameter in conjunction with correlation coefficients provides a more comprehensive understanding of the impact of both quantitative and qualitative input variables on the figures of merit.

References

1.
Devesh
,
R.
,
2015
, “
Decay Heat Calculations for Reactors: Development of a Computer Code ADWITA
,”
Bhabha Atomic research Centre
,
Mumbai, India
, Report No. INDC(IND)-0048.
2.
Bentaïb
,
A.
,
Bonneville
,
H.
,
Cénérino
,
G.
,
2015
,
Nuclear Power Reactor Core Melt Accidents: Current State of Knowledge
,
EDP Sciences
, France.
3.
Choppin
,
G.
,
Liljenzin
,
J.
, and
Rydberg
,
J.
,
1995
,
Radiochemistry and Nuclear Chemistry: Nuclear Chemistry, Theory and Applications
, 2nd ed.,
Butterworth-Heinemann
, Oxford, UK, p.
720
.
4.
van der Linde
,
A.
,
1965
, “
Calculation of the Safe Life Time Expectancy of Zirconium Alloy Canning in the Fuel-Elements of the Nero Reactor
,” Reactor Centrum Nederland, Petten, The Netherlands, Report No. RCN-41.
5.
Grandjean
,
C.
,
Hache
,
G.
,
2008
, “A State-of-the-Art Review of Past Programmes Devoted to Fuel Behaviour Under Loss-of-Coolant Conditions. Part 3. Cladding Oxidation. Resistance to Quench and Post-Quench Loads,” IRSN, France, Report No. DPAM/SEMCA 2008–093.
6.
Gharari
,
R.
,
Kazeminejad
,
H.
,
Kojouri
,
N.
, and
Hedayat
,
A.
,
2018
, “
A Review on Hydrogen Generation, Explosion, and Mitigation During Severe Accidents in Light Water Nuclear Reactors
,”
Int. J. Hydrogen Energy
,
43
(
4
), pp.
1939
1965
.10.1016/j.ijhydene.2017.11.174
7.
US Code of Federal Regulations
,
2004
, “Part 50.46: Acceptance Criteria for Emergency Cooling Systems for Light Water Nuclear Power Reactors.” U.S. Code of Federal Regulations, https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0046.html
8.
Hofmann
,
P.
,
1999
, “
Current Knowledge on Core Degradation Phenomena, A Review
,”
J. Nucl. Mater.
,
270
(
1–2
), pp.
194
211
.10.1016/S0022-3115(98)00899-X
9.
Barrachin
,
M.
,
de-Luze
,
O.
,
Haste
,
T.
, and
Repetto
,
G.
,
2013
, “
Late Phase Fuel Degradation in the Phébus FP Tests
,”
Ann. Nucl. Energy
,
61
, pp.
36
53
.10.1016/j.anucene.2013.03.041
10.
Veshchunov
,
M. S.
, and
Shestak
,
V. E.
,
2008
, “
Model for Melt Blockage (Slug) Relocation and Physico-Chemical Interactions During Core Degradation Under Severe Accident Conditions
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3500
3507
.10.1016/j.nucengdes.2008.08.012
11.
Rempe
,
J. L.
,
Chavez
,
S. A.
,
Thinnes
,
G. L.
,
1993
, “Light Water Reactor Lower Head Failure Analysis,” Nuclear Regulatory Commission, Idaho Falls, ID, Report No. NUREG/CR-5642.
12.
Gaus-Liu
,
X.
,
Cron
,
T.
, and
Fluhrer
,
B.
,
2020
, “
Experimental Studies on Two-Layer Corium Heat Transfer in Light Water Reactor Lower Head in LIVE2D Facility
,”
Nucl. Technol.
,
206
(
9
), pp.
1385
1396
.10.1080/00295450.2020.1743102
13.
Kymaelaeinen
,
O.
,
Helle
,
M.
, and
Pessa
,
E.
,
1998
, “In-Vessel Core Debris Heat Transfer Experiments: COPO II-AP Experiments,” EPRI, Palo Alto, CA, Report No. EPRI-TR-108877.
14.
Kymäläinen
,
O.
,
Tuomisto
,
H.
,
Hongisto
,
O.
, and
Theofanous
,
T. G.
,
1994
, “
Heat Flux Distribution From a Volumetrically Heated Pool With High Rayleigh Number
,”
Nucl. Eng. Des.
,
149
(
1–3
), pp.
401
408
.10.1016/0029-5493(94)90305-0
15.
Sehgal
,
B.
,
Bui
,
V.
,
Dinh
,
T.
, and
Nourgaliev
,
R.
,
2002
, “
Heat Transfer Processes in Reactor Vessel Lower Plenum During Late Phase of In-Vessel Core Melt Progression
,”
Advances in Nuclear Science and Technology
, Vol.
26
,
Springer
,
Boston, MA
, pp.
103
135
.
16.
Allison
,
C. M.
,
Bema
,
G. A.
,
Cheng
,
T. C.
,
Coryell
,
E. W.
,
Davis
,
K. L.
,
Hagrman
,
D. L.
,
Hagrman
,
D. T.
,
Hohorst
,
J. K.
,
Paik
,
S.
,
Shieh
,
A. S.
,
Siefken
,
L. J.
,
1995
, “SCDAP/RELAP5/MOD 3.1 Code Manual: Damage Progression Model Theory: Volume 2 (NUREG/CR-6150-Vol2),” Idaho Falls, United States. https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/008/27008532.pdf?r=1
17.
Jianfeng
,
M.
,
Bao
,
S.
,
Lu
,
Z.
,
Luo
,
L.
, and
Gao
,
Z.
,
2018
, “
The Influence of Crust Layer on Reactor Pressure Vessel Failure Under Pressurized Core Meltdown Accident
,”
J. Nucl. Eng. Radiat. Sci.
,
4
(
4
), p.
9
.10.1115/1.4040494
18.
Gauntt
,
R. O.
,
Cole
,
R. K.
,
Erickson
,
C. M.
,
Gido
,
R. I. G.
,
Gasser
,
R. D.
,
Rodriguez
,
S. B.
, and
Young
,
M. F.
,
2000
, “MELCOR Computer Code Manuals: Primer and User's Guide Version 1.8.5 (NUREG/CR-6119, Volume 1, Revision 2),” Albuquerque, NM, Report No. SAND2000-2417/1.
19.
Siefken
,
L. J.
,
Coryell
,
E. W.
,
Harvego
,
E. A.
,
Hohorst
,
J. K.
,
2001
, “
SCDAP/RELAP5/MOD 3.3 Code Manual, Code Architecture and Interface of Thermal-Hydraulic and Core Behavior Models
(NUREG/CR-6150, Rev. 2),” Idaho National Engineering and Environmental Laboratory, USA, Report No. INEL-96/0422.
20.
Electric Power Research Institute,
1994
, “
MAAP4: Modular Accident Analysis Program for LWR Plants
,”
Code Manual
,
Prepared by Fauske & Associates Inc./EPRI
,
Palo Alto, CA/Burr Ridge, IL
.
21.
Leyse
,
M.
,
2014
, “Preventing Hydrogen Explosions in Severe Nuclear Accidents: Unresolved Safety Issues Involving Hydrogen Generation and Mitigation,” NRDC,New York, Report No. 14-02-B.
22.
Gauntt
,
R. O.
,
2007
, “Uncertainty Analyses Using the MELCOR Severe Accident Analysis Code,” Nuclear Energy Agency of the OECD, France, https://www.oecd-nea.org/nsd/reports/2007/nea6053/Session-III-Applications-to-Uncertainty-Assessment-on-Severe-Acc/Paper-11_Gauntt.pdf
23.
Polo-Labarrios
,
M. A.
, and
Espinosa-Paredes
,
G.
,
2015
, “
Comparative Study of the Hydrogen Generation During Short Term Station Blackout (STSBO) in a BWR
,”
Ann. Nucl. Energy
,
83
, pp.
274
282
.10.1016/j.anucene.2015.04.027
24.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.10.1016/S0951-8320(03)00058-9
25.
Quench, “QUENCH Program at KIT,” accessed June 28, 2022, http://Quench.Forschung.Kit.Edu/
26.
Kaliatka
,
T.
,
Kaliatka
,
A.
, and
Vileiniskis
,
V.
,
2016
, “
Application of Best Estimate Approach for Modelling of QUENCH-03 and QUENCH-06 Experiments
,”
Nucl. Eng. Technol.
,
48
(
2
), pp.
419
433
.10.1016/j.net.2015.12.011
27.
Chatelard
,
P.
,
Reinke
,
N.
,
Arndt
,
S.
,
Belon
,
S.
,
Cantrel
,
L.
,
Carenini
,
L.
,
Chevalier-Jabet
,
K.
,
Cousin
,
F.
,
Eckel
,
J.
,
Jacq
,
F.
,
Marchetto
,
C.
,
Mun
,
C.
, and
Piar
,
L.
,
2014
, “
ASTEC V2 Severe Accident Integral Code Main Features, Current V2.0 Modelling Status, Perspectives
,”
Nucl. Eng. Des.
,
272
, pp.
119
135
.10.1016/j.nucengdes.2013.06.040
28.
Kloos
,
M.
, and
Hofer
,
E.
,
1999
,
SUSA Version 3.2: User's Guide and Tutorial
,
GRS
,
Garching, Germany
.
29.
IAEA
,
2019
, “Status and Evaluation of Severe Accident Simulation Codes for Water Cooled Reactors,” Report of Coordinated Research Project, IAEA TECDOC Series, IAEA, Vienna, Austria, Report No. IAEA-TECDOC-1872.
30.
Sehgal
,
B. R.
,
2012
,
Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology
,
Elsevier/Academic Press
, New York, p.
732
.
31.
Electric Power Research Institute
,
1992
,
Severe Accident Management Guidance Technical Basis Report: The Physics of Accident Progression
,” Vol.
2
,
Electric Power Research Institute
, Washington, DC, Report No. TR-101869-V2.
32.
International Atomic Energy Agency
,
2008
,
Approaches and Tools for Severe Accident Analysis for Nuclear Power Plants
, Safety Reports Series,
International Atomic Energy Agency
,
Vienna, Austria
.
33.
Reyes-Fuentes
,
M.
,
Del-Valle-Gallegos
,
E.
,
Durán-Gonzalez
,
J.
,
Ortíz-Villafuerte
,
J.
,
Castillo-Durán
,
R.
,
Gómez-Torres
,
A.
, and
Queral
,
C.
,
2021
, “
AZTUSIA: A New Application Software for Uncertainty and Sensitivity Analysis for Nuclear Reactors
,”
Reliab. Eng. Syst. Saf.
,
209
, p.
107441
.10.1016/j.ress.2021.107441
34.
Roberts
,
K.
, and
Sanders
,
R.
,
2013
, “
Application of Uncertainty Analysis to MAAP4 Analyses for Level 2 PRA Parameter Importance Determination
,”
Nucl. Eng. Technol.
,
45
(
6
), pp.
767
790
.10.5516/NET.02.2013.524
35.
Wang
,
T. C.
, and
Lee
,
M.
,
2020
, “
Uncertainty Quantification Using the MAAP5 Code of in-Vessel Hydrogen Generation in a Severe Accident at an Advanced Boiling Water Reactor
,”
Nucl. Technol.
,
206
(
3
), pp.
414
427
.10.1080/00295450.2019.1653152
36.
DiMelfi
,
R. J.
,
1978
, “
Comments on: ‘Understanding the Larson-Miller Parameter,’ by F. T. Furillo, S. Purushothaman and J. K. Tien (1)
,”
Scr. Metall.
,
12
(
4
), pp.
327
329
.10.1016/0036-9748(78)90291-0
37.
The SCDAP/RELAP5 Development Team
,
1997
, “SCDAP/RELAP5/MOD3.2 CODE Manual: Damage Progression Model Theory,” Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID, Report No. NUREG/CR-6150/INEL-96/0422.
38.
Nuclear Energy Agency/Committee on the Safety of Nuclear Installation
,
2015
, “Ability of Current Advanced Codes to Predict In-Vessel Core Melt Progression and Degraded Core Coolability—Benchmark Exercise on Three Mile Island-2 Plant,” Nuclear Energy Agency/Committee on the Safety of Nuclear Installation, Report No. NEA/CSNI/R (2015)3.
39.
Electric Power Research Institute
,
2017
, Modular Accident Analysis Program 5 (MAAP5) Applications Guidance: Desktop Reference for Using MAAP5 Software – Phase 3 Report,” Electric Power Research Institute, Washington, DC, Report No. 3002010658.
40.
Wilks
,
S. S.
,
1941
, “
Determination of Sample for Setting Tolerance Limits
,”
Ann. Math. Stat.
,
12
(
1
), pp.
91
96
.10.1214/aoms/1177731788
41.
Cochran
,
W. G.
,
1954
, “
Some Methods for Strengthening the Common χ2 Tests
,”
Biometrics
,
10
(
4
), pp.
417
451
.10.2307/3001616
You do not currently have access to this content.