Abstract

To address the deficiencies in the fillet welding position of the clad plates in the simulated spent fuel pool, an underwater test platform was designed for local dry laser fillet welding under both normal and high-pressure environments. This study focused on multilayer and multipass (MLMP) welding repairs, specifically examining the local underwater laser dry fillet welding process using filler wire made of duplex stainless steel S32101 for third-generation nuclear power stations in air environment (AE), underwater environment (UE), and high-pressure underwater environment (HPUE). The analysis included the microstructure, ferrite content, phase composition, chemical composition, microhardness, and localized corrosion resistance of the fillet welds across the three environments. The main conclusions are as follows: under HPUE, the grain size is the smallest, the cooling rate is the fastest, and the weld consists of intragranular austenite (IGA), grain boundary austenite (GBA), and Widmanstätten austenite (WA); the ferrite content in the heat-affected zone (HAZ) is greater than that in the weld zone, with the highest ferrite content observed in the HPUE; the full width at half maximum (FWHM) of δ (110) and γ (111) varies across different environments; the manganese (Mn) content in HPUE is low; the hardness of the weld zone is the highest, followed by the HAZ, while the base metal (BM) exhibits the lowest hardness; and the pitting corrosion resistance in HPUE is the strongest, attributed to the rapid cooling rate and the pressure of nitrogen (N2) gas velocity.

References

1.
Yuxiang
,
W.
,
2023
, “
Research on Welding Process of S32101 Economical Duplex Stainless Steel
,”
Chem. Eng. Des.
,
33
(
3
), pp.
15
19
.
2.
Tamura
,
M.
,
Kawano
,
S.
, and
Kouno
,
W.
,
2006
, “
Development of Underwater Laser Cladding and Underwater Laser Seal Welding Techniques for Reactor Components (II)
,”
ASME
Paper No. ICONE14-89346.10.1115/ICONE14-89346
3.
Łabanowski
,
J.
,
2011
, “
Development of Under-Water Welding Techniques
,”
Weld. Int.
,
25
(
12
), pp.
933
937
.10.1080/09507116.2010.540847
4.
Xu
,
S.
,
Jia
,
C.
,
Maksymov
,
S.
,
Cai
,
Z.
, and
Wu
,
C.
,
2024
, “
Modeling the Coupled Bubble-Arc-Droplet Evolution in Underwater Flux-Cored Arc Welding
,”
Int. J. Mech. Sci.
,
284
, p.
109754
.10.1016/j.ijmecsci.2024.109754
5.
Li
,
Y.
,
Geng
,
S.
,
Shu
,
L.
,
Li
,
Y.
, and
Jiang
,
P.
,
2023
, “
Ultra-High-Power Laser Welding of Thick-Section Steel: Current Research Progress and Future Perspectives
,”
Opt. Laser Technol.
,
167
, p.
109663
.10.1016/j.optlastec.2023.109663
6.
Slobodyan
,
M.
,
2021
, “
Resistance, Electron- and Laser-Beam Welding of Zirconium Alloys for Nuclear Applications: A Review
,”
Nucl. Eng. Technol.
,
53
(
4
), pp.
1049
1078
.10.1016/j.net.2020.10.005
7.
Hu
,
Y.
,
Shi
,
Y.
,
Sun
,
K.
,
Shen
,
X.
, and
Wang
,
Z.
,
2018
, “
Microstructure and Mechanical Properties of Underwater Hyperbaric FCA-Welded Duplex Stainless Steel Joints
,”
J. Mater. Process. Technol.
,
261
, pp.
31
38
.10.1016/j.jmatprotec.2018.05.027
8.
Guo
,
N.
,
Fu
,
Y.
,
Xing
,
X.
,
Liu
,
Y.
,
Zhao
,
S.
, and
Feng
,
J.
,
2018
, “
Underwater Local Dry Cavity Laser Welding of 304 Stainless Steel
,”
J. Mater. Process. Technol.
,
260
, pp.
146
155
.10.1016/j.jmatprotec.2018.05.025
9.
Bucurel
,
R.
, and
Hlifka
,
G.
,
2010
, “
Laser Beam Welding Process Automates Underwater Repairs
,”
Weld. J.
,
89
, pp.
47
49
.
10.
Han
,
L.
,
Wu
,
X.
,
Chen
,
G.
,
Wang
,
Z.
, and
Fan
,
W.
,
2019
, “
Local Dry Underwater Welding of 304 Stainless Steel Based on a Microdrain Cover
,”
J. Mater. Process. Technol.
,
268
, pp.
47
53
.10.1016/j.jmatprotec.2018.12.029
11.
Yoda
,
M.
,
Tamura
,
M.
, and
Fukuda
,
T.
,
2012
, “
Underwater Laser Beam Welding for Nuclear Reactors, Volume 1: Plant Operations, Maintenance, Engineering
,”
ASME
Paper No. ICONE20-POWER2012-54836.10.1115/ICONE20-POWER2012-54836
12.
Baghdadchi
,
A.
,
Hosseini
,
V. A.
,
Hurtig
,
K.
, and
Karlsson
,
L.
,
2021
, “
Promoting Austenite Formation in Laser Welding of Duplex Stainless Steel Impact of Shielding Gas and Laser Reheating
,”
Weld. World
,
65
, pp.
499
511
.10.1007/s40194-020-01026-7
13.
Westin, E. M.,
2010
, “
Microstructure and Properties of Welds in the Lean Duplex Stainless Steel LDX 2101
,”
Doctoral thesis
, Royal Institute of Technology, Stockholm, Sweden.https://www.diva-portal.org/smash/get/diva2:376827/FULLTEXT01.pdf
14.
Duprez
,
L.
,
De Cooman
,
B. C.
, and
Akdut
,
N.
,
2001
, “
Redistribution of the Substitutional Elements During σ and X Phase Formation in a Duplex Stainless Steel
,”
Steel Res.
,
72
(
8
), pp.
311
316
.10.1002/srin.200100123
15.
Muthupandi
,
V.
,
Bala Srinivasan
,
P.
,
Shankar
,
V.
,
Seshadri
,
S. K.
, and
Sundaresan
,
S.
,
2005
, “
Effect of Nickel and N2 Addition on the Microstructure and Mechanical Properties of Power Beam Processed Duplex Stainless Steel (UNS 31803) Weld Metals
,”
Mater. Lett.
,
59
(
18
), pp.
2305
2309
.10.1016/j.matlet.2005.03.010
16.
Hu
,
Y.
,
Wang
,
Z.
,
Chen
,
M.
,
Jia
,
Z.
,
Bi
,
K.
, and
Sun
,
G.
,
2025
, “
Combination Effects of Laser Heating and Water Cooling on the Repair Performance of Hastelloy C-276 by Underwater Laser Direct Metal Deposition
,”
Opt. Laser Technol.
,
180
, p.
111534
.10.1016/j.optlastec.2024.111534
17.
Cui
,
X.
,
Jin
,
G.
,
Zhao
,
Y.
,
Wen
,
X.
, and
Zhang
,
Y.
,
2023
, “
Effect of In-Situ Ni Interlayer on the Microstructure and Corrosion Resistance of Underwater Wet 316 L Stainless Steel Laser Cladding Layer
,”
Surf. Coat. Technol.
,
458
, p.
129341
.10.1016/j.surfcoat.2023.129341
18.
Ha
,
H.-Y.
,
Lee
,
T.-H.
,
Lee
,
C.-G.
, and
Yoon
,
H.
,
2019
, “
Understanding the Relation Between Pitting Corrosion Resistance and Phase Fraction of S32101 Duplex Stainless Steel
,”
Corros. Sci.
,
149
, pp.
226
235
.10.1016/j.corsci.2019.01.001
19.
Emerson
,
J. N.
,
Marrero-Jackson
,
E. H.
,
Nemets
,
G. A.
,
Okuniewski
,
M. A.
, and
Wharry
,
J. P.
,
2024
, “
Nuclear Reactor Pressure Vessel Welds: A Critical and Historical Review of Microstructures, Mechanical Properties, Irradiation Effects, and Future Opportunities
,”
Mater. Des.
,
244
, p.
113134
.10.1016/j.matdes.2024.113134
20.
Sun
,
K.
,
Zeng
,
M.
,
Shi
,
Y.
,
Hu
,
Y.
, and
Shen
,
X.
,
2018
, “
Microstructure and Corrosion Behavior of S32101 Stainless Steel Underwater Dry and Wet Welded Joints
,”
J. Mater. Process. Technol.
,
256
, pp.
190
201
.10.1016/j.jmatprotec.2018.02.018
You do not currently have access to this content.