Abstract

Technetium-99m (Tc-99m) has a 6-hr half-life making customer transportation times a challenge. Australian Nuclear Science and Technology Organization (ANSTO) health products group has overcome this by delivering the parent isotope molybdenum-99 (Mo-99), which has a half-life of 66 hr, in shielded GENTECH™ generators. As part of ANSTO's questioning attitude, an augmented risk assessment was undertaken to identify any potential exposure risks of the GENTECH™ assembly process. The evaluation identified potential areas of improvement in contamination control for the manual handling of the generator leads. Upon further analysis, contamination events from the generator leads had the potential for skin doses above the threshold for skin tissue reactions. Additional substitution and administrative controls were designed to mitigate the risks identified. The effectiveness of the new controls was assessed for efficiency in the manufacturing process through mock trials and fitness for use in a pharmaceutical cleanroom environment. The implemented controls were monitored, and data from each run were gathered. These data included changes in radiological conditions and dosimetry results. Upon implementation, there was an observable decrease in glove contamination. The decrease verified that there was a reduction in the risk of skin contamination events. The data analysis was used to model the dose averted, which revealed a reduction in potential extremity dose to production workers. This paper aims to show the optimization within an approved process through the implementation of engineering and administrative controls, resulting in a dose reduction to workers.

References

1.
National Academies of Sciences, Engineering, and Medicine,
2018
, “
Opportunities and Approaches for Supplying Molybdenum-99 and Associated Medical Isotopes to Global Markets
,”
Proceedings of a Symposium
,
National Academies Press
,
Washington, DC
, July 17–18, p.
67
.
2.
Papagiannopoulou
,
D.
,
2017
, “
Technetium‐99m Radiochemistry for Pharmaceutical Applications
,”
J. Labelled Compd. Radiopharm.
,
60
(
11
), pp.
502
514
.10.1002/jlcr.3531
3.
Rathmann
,
S. M.
,
Ahmad
,
Z.
,
Slikboer
,
S.
,
Bilton
,
H. A.
,
Snider
,
D. P.
, and
Valliant
,
J. F.
,
2019
, “
The Radiopharmaceutical Chemistry of Technetium-99m
,”
Radiopharmaceutical Chemistry
, 1st ed.,
J. L.
Lewis
,
A. D.
Windhorst
,
B. M.
Zeglis, eds.
,
Springer International Publishing
,
Cham, Zug, Switzerland
, pp.
311
333
.
4.
Maurer
,
T.
,
Robu
,
S.
,
Schottelius
,
M.
,
Schwamborn
,
K.
,
Rauscher
,
I.
,
Van den Berg
,
N.
,
W.B. van Leeuwen
,
F.
,
Haller
,
B.
,
Horn
,
T.
,
Heck
,
M. M.
,
Gschwend
,
J. E.
,
Schwaiger
,
M.
,
Wester
,
H.
, and
Eiber
,
M.
,
2019
, “
99mTechnetium-Based Prostate-Specific Membrane Antigen–Radioguided Surgery in Recurrent Prostate Cancer
,”
Eur. Urol.
,
75
(
4
), pp.
659
666
.10.1016/j.eururo.2018.03.013
5.
Santos
,
C. J.
,
Filho
,
F. M.
,
Campos
,
F. L.
,
De Aguiar Ferreira
,
C.
,
De Barros
,
A. L. B.
, and
Soares
,
D. C. F.
,
2020
, “
Ag2WO4 Nanoparticles Radiolabeled With Technetium-99m: A Potential New Tool for Tumor Identification and Uptake
,”
J. Radioanal. Nucl. Chem.
,
323
(
1
), pp.
51
59
.10.1007/s10967-019-06955-2
6.
Mojarrad
,
P.
,
Zamani
,
S.
,
Seyedhamzeh
,
M.
,
Omoomi
,
F. D.
,
Karimpourfard
,
N.
,
Hadadian
,
S.
,
Ebrahimi
,
S. E. S.
,
Hamedani
,
M. P.
,
Farzaneh
,
J.
, and
Ardestani
,
M. S.
,
2020
, “
Novel Radiopharmaceutical (Technetium-99m)-(DOTA-NHS-Ester)-Methionine as a SPECT-CT Tumor Imaging Agent
,”
Eur. J. Pharm. Sci.
,
141
(
1
), p.
105112
.10.1016/j.ejps.2019.105112
7.
Mettler
,
F. A.
, and
Guiberteau
,
M. J.
,
2012
,
Essentials of Nuclear Medicine Imaging, 6th ed.
,
Elsevier Health Sciences
,
Philadelphia, PA
, p.
624
.
8.
Harper
,
P. V.
,
Lathrop
,
K. A.
,
Jiminez
,
F.
,
Fink
,
R.
, and
Gottschalk
,
A.
,
1965
, “
Technicium 99m as a Scanning Agent
,”
Radiology
,
85
(
1
), pp.
101
109
.10.1148/85.1.101
9.
Organisation for Economic Co-operation and Development and Nuclear Energy Agency
,
2019
, “
The Supply of Medical Radioisotopes 2019 Medical Isotope Demand and Capacity for the 2019–2024 Period
,” Nuclear Technology Development and Economics, Paris, France, p.
30
.
10.
Organisation for Economic Co-operation and Development and Nuclear Energy Agency, 2019,
The Supply of Medical Isotopes: An Economic Diagnosis and Possible Solutions
, Chapters 1 and 2,
OECD Publishing
,
Paris, France
.
11.
Rodriguez López
,
R.
,
Torres Valle
,
A.
,
Soria Guevara
,
M. A.
, and
Ayra Pardo
,
F. E.
,
2017
, “
Risk Analysis Applied to the Production of Generators of Molybdenum-99/Technetium-99m
,”
Nucleus (Havana)
,
49
(
61
), pp.
26
31
.https://inis.iaea.org/search/search.aspx?orig_q=RN:49047576
12.
Australian Radiation Protection and Nuclear Safety Agency,
2014
, “
ARPANSA – Radiation Protection Series Fundamentals (RPS F-1)
,” Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia, p.
36
.
13.
Australian Radiation Protection and Nuclear Safety Agency
,
2016
, “
ARPANSA – Code for Radiation Protection in Planned Exposure Situations (2016) (RPS C-1)
,” Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia, p.
40
.
14.
International Atomic Energy Agency,
2018
, “
IAEA Safety Standards. Occupational Radiation Protection
,” International Atomic Energy Agency, General Safety Guide No. GSG-7, Vienna, Austria, p.
336
.
15.
Australian Radiation Protection and Nuclear Safety Agency,
2017
, “
ARPANSA – Regulatory Guide Holistic Safety
,” Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia, p.
20
.
16.
Delacroix
,
D.
,
Guerre
,
J. P.
,
Leblanc
,
P.
, and
Hickman
,
C.
,
2002
,
Radionuclide and Radiation Protection Data Handbook 2002
, 2nd ed.,
Nuclear Technology Publishing
,
Saclay, France
, p.
168
.
17.
Abdelhady
,
A.
,
2017
, “
Skin Dose Evaluation After Accidental Contamination During Mo-99 Extraction Process
,”
Appl. Radiat. Isot.
,
123
, pp.
17
20
.10.1016/j.apradiso.2017.02.009
18.
Yousef
,
H.
,
Alhajj
,
M.
, and
Sharma
,
S.
,
2020
,
Anatomy, Skin (Integument), Epidermis
,
StatPearls Publishing
,
Treasure Island, FL
.
19.
Centers for Disease Control and Prevention (CDC)
,
2005
, “
Cutaneous Radiation Injury: A Fact Sheet for Physicians CDC
,” Centers for Disease Control and Prevention, Atlanta, GA, p.
13
, accessed July 20, 2021, www.cdc.gov/nceh/radiation/emergencies/pdf/criphysicianfactsheet.pdf
20.
Stewart
,
F. A.
,
Akleyev
,
A. V.
,
Hauer-Jensen
,
M.
,
Hendry
,
J. H.
,
Kleiman
,
N. J.
,
MacVittie
,
T. J.
,
Aleman
,
B. M.
,
Edgar
,
A. B.
,
Mabuchi
,
K.
,
Muirhead
,
C. R.
,
Shore
,
R. E.
, and
Wallace
,
W. H.
,
2012
, “
ICRP Statement on Tissue Reactions/Early and Late Effects of Radiation in Normal Tissues and Organs—Threshold Doses for Tissue Reactions in a Radiation Protection Context, ICRP Publication 118
,”
Ann. ICRP
,
41
(
1–2
), pp.
1
325
.10.1016/j.icrp.2012.02.001
21.
Eckerman
,
K.
, and
Endo
,
A.
,
2008
, “
Nuclear Decay Data for Dosimetric Calculations, ICRP Publication 107
,”
Ann. ICRP
,
38
(
3
), pp.
7
96
.10.1016/j.icrp.2008.10.004
22.
Amato
,
E.
,
Ernesto
,
A.
, and
Italiano
,
A.
,
2018
, “
Evaluation of Skin Absorbed Doses During Manipulation of Radioactive Sources: A Comparison Between the VARSKIN Code and Monte Carlo Simulations
,”
J. Radiol. Prot.
,
38
(
1
), pp.
262
272
.10.1088/1361-6498/aaa157
23.
Bella
,
G.
,
Bistarelli
,
S.
,
Peretti
,
P.
, and
Riccobene
,
S.
,
2007
, “
Augmented Risk Analysis
,”
Electron. Notes Theor. Comput. Sci.
,
168
(
3
), pp.
207
220
.10.1016/j.entcs.2006.12.006
24.
Anspach
,
L.
, and
Hamby
,
D.
,
2018
, “
Performance of the Varskin 5 (V5.3) Electron Dosimetry Model
,”
Radiat. Prot. Dosim.
,
181
(
2
), pp.
111
119
.10.1093/rpd/ncx302
25.
Hamby
,
D. M.
,
Mangini
,
C. D.
,
Caffrey
,
J. A.
, and
Tang
,
M.
,
2014
, “
VARSKIN 5 (v5.3): a Computer Code for Skin Contamination Dosimetry
,” Department of Nuclear Engineering and Radiation Health Physics, Corvallis, OR, pp.
1
149
.
You do not currently have access to this content.