Abstract

The paper investigates the influence of the used thermal-hydraulic approximations on the coupled calculations of gas-cooled fast reactor design (hereby GFR 2400). The NESTLE code is used as coupled simulation tool and solves the multigroup neutron diffusion equation by the finite difference method that is internally coupled with a thermal-hydraulic subchannel code. The in-house developed tempin code and the computational fluid dynamics (CFD) code fluent (from ANSYS code system, Canonsburg, PA) are used to prepare the thermal-hydraulic data for the GFR 2400 calculations. The tempin code solves the steady-state heat balance equation with flowing coolant in triangular lattice cell together with temperature dependent thermal-hydraulic properties of the fuel, cladding, and coolant. Based on the calculated fuel bundle temperature distributions by the tempin code, the thermal-hydraulic material properties (approximations) suitable for the NESTLE coupled code are processed for the GFR 2400 design. The influence of the constant and radial heat generation term within the fuel pin is studied within the paper. The performance of the NESTLE code with thermal-hydraulic approximations processed by both (tempin and fluent) methods is compared with the findings of the GoFastR project. Moreover, both the thermal-hydraulic approximations were compared for one steady-state and one transient state, related to the rapid withdrawal of one control rod assembly from the core. Changes in thermal-hydraulic distributions are described and visualized in the paper.

References

1.
Electric Power Research Center
,
2003
, “
NESTLE Version 5.2.1 (Few-Group Neutron Diffusion Equation Solver Utilizing the Nodal Expansion Method for Eigenvalue, Adjoint, Fixed-Source Steady-State and Transient Problems)
,” North Carolina State University, Raleigh, NC, Report No. Manual, NC 27695-7909, p.
177
.
2.
Downar
,
T.
,
Lee
,
D.
,
Xu
,
Y.
, and
Kozlowski
,
T.
,
2004
,
PARCS v2.6 U.S. NRC Core Neutronics Simulator—Theory Manual
,
Res/U.S. Nrc
,
Rockville, MD
.
3.
Vitkova
,
M.
,
Kalchev
,
B.
, and
Stefanova
,
S.
,
2006
, “
Regulatory Requirements to the Thermal-Hydraulic and Thermal-Mechanical Computer Codes
,”
Proceedings of the International Conference on WWER Fuel Performance, Modelling and Experimental Support
, Albena, Bulgaria, Sept. 19–23, p.
12
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/37/098/37098345.pdf
4.
Oak Ridge National Laboratory
,
2018
, “
SCALE Code System (Version 6.2.3)
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. Manual, ORNL/TM-2005/39, p.
2760
.
5.
Ade
,
B. J.
,
2012
, “
SCALE/TRITON Primer: A Primer for Light Water Reactor Lattice Physics Calculation
,”
United States Nuclear Regulatory Commission
,
Oak Ridge
, p.
279
, Report No. ORNL/TM-2011/21 (NUREG/CR-7041).
6.
Osuský
,
F.
,
Vrban
,
B.
, and
Haščík
,
J.
,
2019
, “
Implementation of Neutron Trap Passive System in GFR 2400 Fast Reactor Design
,”
Proceedings of 28th International Conference Nuclear Energy for New Europe – NENE 2019
, Portorož, Slovenia, Sept. 9–12, p.
8
.
7.
Osuský
,
F.
,
2019
, “
Neutronic Study of Fast Reactor Cores with a Focus on Transient Processes
,” Ph.D. thesis,
Slovak University of Technology in Bratislava
,
Bratislava, Slovakia
, p.
195
.
8.
ANSYS,
2019
, “
ANSYS: Fluent Theory Guide, Release 19.1
,”
ANSYS, Help System
, Canonsburg, PA.
9.
European Commission
,
2010
, “
GoFastR: European Gas Cooled Fast Reactor
,” Jacobs Clean Energy Limited, Great Britain, UK, accessed Sept. 7, 2020, http://cordis.europa.eu/project/rcn/96860_en.html
10.
Osuský
,
F.
,
Vrban
,
B.
,
Lüley
,
J.
,
Čerba
,
Š.
, and
Haščík
,
J.
,
2018
, “
Definition of the Thermal-Hydraulic Model of the Gas-Cooled Fast Reactor
,”
J. Nuclear Res. Dev.
,
15
, pp.
14
18
.http://www.jnrdnuclear.ro/images/JNRD/No.15/jnrd_159_art3.pdf
11.
Osuský
,
F.
,
Vrban
,
B.
,
Čerba
,
Š.
,
Lüley
,
J.
,
Haščík
,
J.
, and
Slugeň
,
V.
,
2017
, “
Macroscopic Cross-Section Processing for Nestle Code System
,”
APCOM 2017: Proceedings of 23rd International Conference on Applied Physics of Condensed Matter
, Štrbské Pleso, Slovak Republic, June 12–14, p.
6
.https://inis.iaea.org/search/search.aspx?orig_q=RN:50017547
12.
Perkó
,
Z.
,
Pelloni
,
S.
,
Mikityuk
,
K.
,
Křepel
,
J.
,
Szieberth
,
M.
,
Gaëtan
,
G.
,
Vrban
,
B.
,
Lüley
,
J.
,
Čerba
,
Š.
,
Halász
,
M.
,
Fehér
,
S.
,
Reiss
,
T.
,
Kloosterman
,
J. L.
,
Stainsby
,
R.
, and
Poette
,
C.
,
2015
, “
Core Neutronics Characterization of the GFR2400 Gas Cooled Fast Reactor
,”
Prog. Nucl. Energy
,
83
, pp.
460
481
.10.1016/j.pnucene.2014.09.016
13.
Perkó
,
Z.
,
2015
, “
Sensitivity and Uncertainty Analysis of Coupled Reactor Physics Problems
,” Ph.D. thesis,
Delft University of Technology
: Department of Nuclear Energy and Radiation Applications,
Delft, The Netherlands
, p.
219
.
14.
Vrban
,
B.
,
Čerba
,
Š.
,
Lüley
,
J.
,
Osuský
,
F.
, and
Nečas
,
V.
,
2018
, “
On the Effective Fuel Temperature of VVER-440 Fuels
,”
Proceedings of Second International Conference on Nuclear Power Plants: Structures, Risk and Decommissioning – NUPP
, London, June 11–12, pp.
147
155
.
15.
Verma
,
V.
, and
Ghosh
,
A. K.
,
2011
, “
Thermal Analysis of Metallic Fuel for Future FBRs
,”
Energy Procedia
,
7
, pp.
234
249
.10.1016/j.egypro.2011.06.031
16.
Smith
,
R. V.
,
1969
, “
Review of Heat Transfer to Helium I*
,”
Cryogenics
,
9
(
1
), pp.
11
19
.10.1016/0011-2275(69)90251-3
17.
Heřmanský
,
B.
,
1986
,
Termomechanika Jaderných Reaktorú
,
Academia - ČSAV
,
Prague, Czech Republic
.
18.
Kerrisk
,
J. F.
,
1974
,
Uranium-Plutonium Carbide Fuel Properties
,
University of California
: Los Alamos Scientific Laboratory, Los Alamos, NM.
19.
Jun
,
C. K.
, and
Hoch
,
M.
,
1966
, “
Thermal Conductivity of Tantalum, Tungsten, Rhenium, Ta-10W, T111, T222, W-25Re in the Temperature Range 1500-2800 °K
,”
University of Cincinnati
: Air Force Materials Laboratory, Research and Technology Division, Wright-Patterson Air Force Base, OH, p.
27
, Report No.
AFML-TR-66-367
.https://www.worldcat.org/title/thermal-conductivity-of-tantalum-tungsten-rhenium-ta-10w-t111-t222-w-25re-in-the-temperature-range-1500-2800k/oclc/426947682
20.
Decatur: Poco Graphite,
2002
,
Properties and Characteristics of Silicon Carbide
,
Decatur
: Poco Graphite, Decatur, TX, p.
22
.
21.
Xia
,
H.
,
Wang
,
J.
,
Lin
,
J.
,
Liu
,
G.
, and
Qiao
,
G.
,
2013
, “
Thermal Conductivity of SiC Ceramic Fabricated by Liquid Infiltrating Molten Si Into Mesocarbon Microbeads-Based Preform
,”
Mater. Charact.
,
82
, pp.
1
8
.10.1016/j.matchar.2013.04.011
You do not currently have access to this content.