Proper performance of structures requires among other things that their failure probability is sufficiently small. This would imply design for survival in extreme conditions. The failure of a system can occur when the ultimate strength is exceeded (ultimate limit state (ULS)) or fatigue limit (fatigue limit state) is exhausted. The focus in this paper is on the determination of extreme responses for ULS design checks, considering coupled wave and wind induced motion and structural response in harsh condition up to 14.4 m significant wave height and 49 m/s 10 min average wind speed (at the top of the tower, 90 m) for a parked floating wind turbine of a spar type concept. In the survival condition, the wind induced resonant responses (mainly platform pitch resonance) are dominant. Due to the platform resonant motion responses, the structural responses are close to Gaussian, but wide banded. The critical structural responses are determined by coupled aerohydro-elastic time domain simulation. Based on different simulations (20 1 h, 20 2 h, 20 3 h, and 20 5 h), the mean up-crossing rate has been found in order to predict the extreme structural responses. The most probable maximum of the bending moment and the bending moment having an up-crossing rate of 104 are found to be close in the present research. The minimum total simulation time in order to get accurate results is highly correlated with the needed up-crossing rate. The 1 h and 2 h raw data cannot provide any information for 104 up-crossing rate. Comparison of different simulation periods shows that the 20 1 h simulations can be used in order to investigate the 3 h extreme bending moment if the proper extrapolation of up-crossing rate is used.

1.
Sclavounos
,
P.
,
Tracy
,
C.
, and
Lee
,
S.
, 2007,
Floating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment
,
Department of Mechanical Engineering, MIT
,
Cambridge, MA
.
2.
Jonkman
,
J. M.
, 2007, “
Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine
,”
NREL
, Technical Report No. NREL/TP-500-41958.
3.
Arswendy
,
A.
,
Devergez
,
M.
,
Luxcey
,
N.
,
Moan
,
T.
, and
Taghipour
,
R.
, 2008, “
Structural Assessment of the FO3 Wave Energy Converter
,”
CeSOS, NTNU, SEEWEC
, Report No. SEEWEC_WP5_12.05.09.
4.
DNV
, 2004, “
Design of Offshore Wind Turbine Structures
,” DNV-OS-J101, Norway.
5.
Amlashi
,
H.
, and
Moan
,
T.
, 2008, “
Ultimate Strength Analysis of a Bulk Carrier Hull Girder Under Alternate Hold Loading Condition—A Case Study Part 1: Nonlinear Finite Element Modeling and Ultimate Hull Girder Capacity
,”
Mar. Struct.
0951-8339,
21
, pp.
327
352
.
6.
Utsunomiya
,
T.
,
Sato
,
T.
,
Matsukuma
,
H.
, and
Yago
,
K.
, 2009, “
Experimental Validation for Motion of a Spar-Type Floating Offshore Wind Turbine Using 1/22.5 Scale Model
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering
, Honolulu, HI, Paper No. OMAE2009-79695.
7.
Larsen
,
T. J.
, and
Hanson
,
T. D.
, 2007, “
A Method to Avoid Negative Damped Low Frequent Tower Vibrations for a Floating, Pitch Controlled Wind Turbine
,”
J. Phys.: Conf. Ser.
1742-6588,
75
, p.
012073
.
8.
Nielsen
,
F. G.
,
Hanson
,
T. D.
, and
Skaara
,
B.
, 2006, “
Integrated Dynamic Analysis of Floating Offshore Wind Turbine
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering
, Hamburg, Germany, Paper No. OMAE2006-92291.
9.
Withee
,
J. E.
, 2004, “
Fully Coupled Dynamic Analysis of a Floating Wind Turbine System
,” Ph.D. thesis, MIT, Cambridge, MA.
10.
Karimirad
,
M.
, and
Moan
,
T.
, 2009, “
Wave and Wind Induced Motion Response of Catenary Moored Spar Wind Turbine
,”
Proceedings of the Conference on Computational Methods in Marine Engineering
, Trondheim, Norway.
11.
DNV
, 2008,
DeepC User Manual
,
Det Norske Veritas
,
Høvik, Norway
.
12.
Larsen
,
T. J.
, and
Hansen
,
A. M.
, 2008,
HAWC2 User Manual
,
Risø National Laboratory, Technical University of Denmark
,
Lyngby, Denmark
.
13.
MARINTEK
, 2008,
Simo/Riflex User Manual
,
SINTEF
,
Trondheim, Norway
.
14.
Karimirad
,
M.
,
Gao
,
Z.
, and
Moan
,
T.
, 2009, “
Dynamic Motion Analysis of Catenary Moored Spar Wind Turbine in Extreme Environmental Condition
,”
Proceedings of the European Offshore Wind Conference, EOW2009
, Stockholm, Sweden.
15.
Standards Norway
, 2007, “
Actions and Action Effects
,” NORSOK N-003, Oslo, Norway.
16.
Faltinsen
,
O. M.
, 1995,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
.
17.
Hansen
,
M. O. L.
, 2008,
Aerodynamics of Wind Turbines
, 2nd ed.,
Earthscan
,
London, UK
.
18.
Bianchi
,
D. F.
,
Battista
,
H. D.
, and
Mantz
,
R. J.
, 2007,
Wind Turbine Control Systems
,
Springer
,
Berlin
.
19.
Larsen
,
J. W.
,
Nielsen
,
S. R. K.
, and
Krenk
,
S.
, 2007, “
Dynamic Stall Model for Wind Turbine Airfoils
,”
J. Fluids Struct.
0889-9746,
23
, pp.
959
982
.
20.
Hansen
,
M. H.
,
Gaunaa
,
M.
, and
Madsen
,
H. A.
, 2004, “
A Beddoes-Leishmann Type Dynamic Stall Model in State-Space and Indicial Formulations
,” Report No. Risø-R-1354 (EN).
21.
Mann
,
J.
,
Astrup
,
P.
,
Kristensen
,
L.
,
Rathmann
,
O.
,
Madsen
,
P. H.
, and
Heathfield
,
D.
, 2000, “
WAsP Engineering DK
,” Report No. Risø-R-1179 (EN).
22.
Johannessen
,
K.
,
Meling
,
T. S.
, and
Haver
,
S.
, 2001, “
Joint Distribution for Wind and Waves in the Northern North Sea
,”
Proceedings of the International Offshore and Polar Engineering Conference, ISOPE
, Stavanger, Norway.
23.
Moan
,
T.
, 2004, “
Design of Offshore Structures
,”
Compendium for TMR4195
,
Marine Technology Centre, NTNU
,
Trondheim, Norway
.
24.
Bechrakis
,
D. A.
, and
Sparis
,
P. D.
, 2000, “
Simulation of the Wind Speeds at Different Heights Using Artificial Neural Networks
,”
Wind Eng.
0309-524X,
24
(
2
), pp.
127
136
.
25.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
, 2002,
Wind Energy Explained, Theory, Design and Application
,
Wiley
,
Chichester, UK
.
26.
Twidell
,
J.
, and
Gaudiosi
,
G.
, 2008,
Offshore Wind Power
,
Multi-Science Publishing Co. Ltd
,
Essex, UK
.
27.
Mann
,
J.
, 1994, “
The Spatial Structure of Neutral Atmospheric Surface-Layer Turbulence
,”
J. Fluid Mech.
0022-1120,
273
, pp.
141
168
.
28.
Ochi
,
M. K.
, 1990,
Applied Probability and Stochastic Processes
,
Wiley
,
New York
.
29.
Gao
,
Z.
, and
Moan
,
T.
, 2008, “
Frequency-Domain Fatigue Analysis of Wide-Band Stationary Gaussian Processes Using a Trimodal Spectral Formulation
,”
Int. J. Fatigue
0142-1123,
30
, pp.
1944
1955
.
30.
Naess
,
A.
,
Gaidai
,
O.
, and
Teigen
,
P. S.
, 2007, “
Extreme Response Prediction for Nonlinear Floating Offshore Structures by Monte Carlo Simulation
,”
Appl. Ocean. Res.
0141-1187,
29
, pp.
221
230
.
31.
Newland
,
D. E.
, 1993,
An Introduction to Random Vibrations, Spectral and Wavelet Analysis
, 3rd ed.,
Dover
,
Mineola, NY
.
32.
Winterstein
,
S. R.
, 1988, “
Nonlinear Vibration Models for Extremes and Fatigue
,”
J. Eng. Mech.
0733-9399,
114
, pp.
1772
1790
.
33.
Karimirad
,
M.
, and
Moan
,
T.
, 2011, “
Wave and Wind Induced Dynamic Response of Catenary Moored Spar Wind Turbine
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X, Online first.
34.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
, 2008,
Wind Energy Handbook
,
Wiley
,
West Sussex, England
.
35.
DNV/Risø
, 2002,
Guidelines for Design of Wind Turbines
, 2nd ed.,
Jydsk Centraltrykkeri
,
Copenhagen, Denmark
.
36.
Bir
,
G.
, and
Jonkman
,
J.
, 2007, “
Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines
,”
Proceedings of the EAWE Torque From Wind Conference
, Lyngby, Denmark.
37.
2005,
Handbook of Offshore Engineering
,
S.
Chakrabarti
, ed.,
Elsevier
,
Oxford, UK
.
You do not currently have access to this content.