This paper studies the application of Dynamic Bayesian Networks (DBNs) for modeling degradation processes in oil and gas pipelines. A DBN tool consisting of a matlab code has been developed for performing inference on models. The tool is then applied for probabilistic modeling of the burst pressure of a pipe subjected to corrosion degradation and for safety assessment. The burst pressure is evaluated using the ASME B31G design method and other empirical formulas. A model for corrosion prediction in pipelines and its governing parameters are explicitly included into the probabilistic framework. Different sets of simulated corrosion measurements are used to increase the accuracy of the model predictions. Several parametric studies are conducted to investigate how changes in the observed corrosion (depth and length) and in the frequency of inspections affect the pipe reliability.

References

1.
Sulaiman
,
N. S.
, and
Tan
,
H.
,
2014
, “
Third Party Damages of Offshore Pipeline
,”
J. Energy Challenges Mech.
,
1
(
1
), pp.
14
19
.https://www.nscj.co.uk/JECM/PDF/1-1-3-Nurul%20Sulaiman-Henry%20Tan.pdf
2.
Teixeira
,
A. P.
,
Guedes Soares
,
C.
,
Netto
,
T. A.
, and
Estefen
,
S. F.
,
2008
, “
Reliability of Pipelines With Corrosion Defects
,”
Int. J. Pressure Vessels Piping
,
85
(
4
), pp.
228
237
.
3.
Leira
,
B. J.
,
Næss
,
A.
, and
Brandrud Næss
,
O. E.
,
2016
, “
Reliability Analysis of Corroding Pipelines by Enhanced Monte Carlo Simulation
,”
Int. J. Pressure Vessels Piping
,
144
, pp.
11
17
.
4.
Teixeira
,
A. P.
,
Zayed
,
A.
, and
Guedes Soares
,
C.
,
2010
, “
Reliability of Pipelines With Non-Uniform Corrosion
,”
J. Ocean Ship Technol.
,
1
(
1
), pp.
12
30
.
5.
Bisaggio
,
H. D. C.
, and
Netto
,
T. A.
,
2015
, “
Predictive Analyses of the Integrity of Corroded Pipelines Based on Concepts of Structural Reliability and Bayesian Inference
,”
Mar. Struct.
,
41
, pp.
180
199
.
6.
Aljaroudi
,
A.
,
Khan
,
F.
,
Akinturk
,
A.
,
Haddara
,
M.
, and
Thodi
,
P.
,
2015
, “
Risk Assessment of Offshore Crude Oil Pipeline Failure
,”
J. Loss Prev. Process Ind.
,
37
, pp.
101
109
.
7.
Hasan
,
S.
,
Khan
,
F.
, and
Kenny
,
S.
,
2012
, “
Probability Assessment of Burst Limit State Due to Internal Corrosion
,”
Int. J. Pressure Vessels Piping
,
89
, pp.
48
58
.
8.
Gerginov
,
E.
,
Group
,
W.
,
Pty
,
K.
,
Sullivan
,
C.
,
Rathbone
,
A.
, and
Griffiths
,
T.
,
2014
, “
Insights in the Application of Structural Reliability Analysis (SRA) for Challenging Pipeline Lateral Buckling Design
,”
ASME
Paper No. OMAE2014-24450.
9.
Oliveira
,
N.
,
Bisaggio
,
H.
, and
Netto
,
T.
,
2016
, “
Probabilistic Analysis of the Collapse Pressure of Corroded Pipelines
,”
ASME
Paper No. OMAE2016-54299.
10.
Teixeira
,
A. P.
,
Palencia
,
O. G.
, and
Guedes Soares
,
C.
,
2017
, “
Reliability Analysis of Corroded Pipelines Under External Pressure
,”
ASME
Paper No. OMAE2017-61964.
11.
Zhou
,
W.
,
2010
, “
System Reliability of Corroding Pipelines
,”
Int. J. Pressure Vessels Piping
,
87
(
10
), pp.
587
595
.
12.
Zhang
,
S.
, and
Zhou
,
W.
,
2013
, “
System Reliability of Corroding Pipelines Considering Stochastic Process-Based Models for Defect Growth and Internal Pressure
,”
Int. J. Pressure Vessels Piping
,
111–112
, pp.
120
130
.
13.
Ossai
,
C. I.
,
Boswell
,
B.
, and
Davies
,
I. J.
,
2016
, “
Application of Markov Modelling and Monte Carlo Simulation Technique in Failure Probability Estimation—A Consideration of Corrosion Defects of Internally Corroded Pipelines
,”
Eng. Fail. Anal.
,
68
, pp.
159
171
.
14.
Shekari
,
E.
,
Khan
,
F.
, and
Ahmed
,
S.
,
2015
, “
A Predictive Approach to Fitness-for-Service Assessment of Pitting Corrosion
,”
Int. J. Pressure Vessels Piping
,
137
, pp.
13
21
.
15.
ASME
,
2012
, “
Manual for Determining the Remaining Strength of Corroded Pipelines
,”
American Society of Mechanical Engineers
,
New York
, Standard No. ASME B31G-2012.
16.
Netto
,
T. A.
,
Ferraz
,
U. S.
, and
Estefen
,
S. F.
,
2005
, “
The Effect of Corrosion Defects on the Burst Pressure of Pipelines
,”
J. Constr. Steel Res.
,
61
(
8
), pp.
1185
1204
.
17.
DNV
,
2015
, “
Recommended Practice—Corroded Pipelines
,”
Det Norske Veritas
,
Oslo, Norway
, Standard No. DNV-RP-F101.
18.
Zhang
,
G.
,
Luo
,
J.
,
Zhao
,
X.
,
Zhang
,
H.
,
Zhang
,
L.
, and
Zhang
,
Y.
,
2012
, “
Research on Probabilistic Assessment Method Based on the Corroded Pipeline Assessment Criteria
,”
Int. J. Pressure Vessels Piping
,
95
, pp.
1
6
.
19.
Nahal
,
M.
, and
Khelif
,
R.
,
2014
, “
Failure Probability Assessment for Pipelines Under the Corrosion Effect
,”
Am. J. Mech. Eng.
,
2
(
1
), pp.
15
20
.
20.
Seo
,
J. K.
,
Cui
,
Y.
,
Mohd
,
M. H.
,
Ha
,
Y. C.
,
Kim
,
B. J.
, and
Paik
,
J. K.
,
2015
, “
A Risk-Based Inspection Planning Method for Corroded Subsea Pipelines
,”
Ocean Eng.
,
109
, pp.
1
32
.
21.
Melchers
,
R. E.
,
1999
,
Structural Reliability and Analysis Prediction
,
John Wiley & Sons
,
Chichester, England
.
22.
Weber
,
P.
,
Medina-Oliva
,
G.
,
Simon
,
C.
, and
Iung
,
B.
,
2012
, “
Overview on Bayesian Networks Applications for Dependability, Risk Analysis and Maintenance Areas
,”
Eng. Appl. Artif. Intell.
,
25
(
4
), pp.
671
682
.
23.
Straub
,
D.
, and
Kiureghian
,
A. D.
,
2010
, “
Bayesian Network Enhanced With Structural Reliability Methods: Methodology
,”
J. Eng. Mech.
,
136
(
10
), pp.
1248
1258
.
24.
Bensi
,
M. T.
,
Der Kiureghian
,
A.
, and
Straub
,
D.
,
2011
, “
A Bayesian Network Methodology for Infrastructure Seismic Risk Assessment and Decision Support
,” Ph.D. thesis, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, CA.
25.
Iung
,
B.
,
Véron
,
M.
,
Suhner
,
M. C.
, and
Muller
,
A.
,
2005
, “
Integration of Maintenance Strategies Into Prognosis Process to Decision-Making Aid on System Operation
,”
CIRP Ann. Manuf. Technol.
,
54
(
1
), pp.
5
8
.
26.
Palencia
,
O. G.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2017
, “
Modelling of Deterioration Processes in Ship Structures Through Dynamic Bayesian Networks
,”
Safety, Reliability, Risk, Resilience and Sustainability of Structures and Infrastructure
,
C.
Bucher
,
B. R.
Ellingwood
, and
D. M.
Frangopol
, eds.,
TU-Verlag
,
Vienna, Austria
, pp.
1936
1946
.
27.
Straub
,
D.
,
2009
, “
Stochastic Modeling of Deterioration Processes Through Dynamic Bayesian Networks
,”
J. Eng. Mech.
,
135
(
10
), pp.
1089
1099
.
28.
Straub
,
D.
,
2010
, “
An Efficient Computational Framework for Probabilistic Deterioration Modeling and Reliability Updating
,”
Safety, Reliability and Risk of Structures, Infrastructures and Engineering Systems
,
H.
Furuta
,
D.
Frangopol
, and
M.
Shinozuka
, eds.,
Taylor & Francis Group
,
London
, pp.
3255
3262
.
29.
Pots
,
B. F. M.
,
2005
, “
Prediction of Corrosion Rates of the Main Corrosion Mechanisms in Upstream Applications
,” Corrosion 2005, NACE International, Denver, CO, Document No. NACE-05550.
30.
Nordsveen
,
M.
,
Nesic
,
S.
,
Nyborg
,
R.
, and
Stangeland
,
A.
,
2003
, “
A Mechanistic Model for CO2 Corrosion With Protective Iron Carbonate Films—Part 1: Theory and Verification
,”
Corrosion
,
59
(
5
), pp.
443
456
.
31.
de Waard
,
C.
,
Lotz
,
U.
, and
Milliams
,
D. E.
,
1991
, “
Predictive Model for CO2 Corrosion Engineering in Wet Natural Gas Pipelines
,”
Corrosion
,
47
(
12
), pp.
976
985
.
32.
Nyborg
,
R.
,
2002
, “
Overview of CO2 Corrosion Models for Wells and Pipelines
,” Corrosion/2002, NACE International, Denver, CO, Document No. NACE-02233.
33.
Nyborg
,
R.
,
2010
, “
CO2 Corrosion Models for Oil and Gas Production Systems
,” Corrosion 2010, NACE International, San Antonio, Texas, Document No. NACE-10371.
34.
Barbosa
,
A. A.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2017
, “
Strength Analysis of Corroded Pipelines Subjected to Internal Pressure and Bending Moment
,”
Progress in the Analysis and Design of Marine Structures
,
C.
Guedes Soares
, and
Y.
Garbatov
, eds.,
Taylor & Francis Group
,
London
, pp.
803
811
.
35.
de Waard
,
C.
, and
Milliams
,
D. E.
,
1975
, “
Carbonic Acid Corrosion of Steel
,”
Corrosion
,
31
(
5
), pp.
177
181
.
36.
de Waard
,
C.
,
Lotz
,
U.
, and
Dugstad
,
A.
,
1995
, “
Influence of Liquid Flow Velocity on CO2 Corrosion: A Semi-Empirical Model
,” Corrosion 95, NACE International, Baltimore, MD, Document No. NACE-128.
37.
Russell
,
S. J.
, and
Norwig
,
P.
,
2009
,
Artificial Intelligence: A Modern Approach
,
Pearson
,
New York
.
38.
Langseth
,
H.
,
Nielsen
,
T. D.
,
Rumí
,
R.
, and
Salmerón
,
A.
,
2009
, “
Inference in Hybrid Bayesian Networks
,”
Reliab. Eng. Syst. Saf.
,
94
(
10
), pp.
1499
1509
.
39.
Zwirglmaier
,
K.
, and
Straub
,
D.
,
2016
, “
A Discretization Procedure for Rare Events in Bayesian Networks
,”
Reliab. Eng. Syst. Saf.
,
153
, pp.
96
109
.
You do not currently have access to this content.