Abstract

The square concrete deck is being used as an elevated transition piece in offshore structure but has a large exposure area to extreme waves. This study focused on the horizontal wave-in-deck loads on the square concrete deck. Wave flume tests were carried out to investigate the wave-in-deck loads on a specimen of a square concrete deck. Horizontal wave-in-deck loads on the specimen with ten different structural orientations were measured under three nonlinear regular wave trains. A novel analytical model of the horizontal wave-in-deck loads on the square thick deck was proposed by including both impact maxima and pulse shape function. The temporal development of the resultant horizontal wave-in-deck loads was studied from the measured forces through data post-processing. The effects of structural orientation, inundation depth, and the correlation between the rise and decay time were considered based on the experimental data. The marginal distributions of the impact maxima and rise time for the horizontal wave-in-deck loads on the square deck were investigated, and the joint probability model of impact maxima and rise time was finally developed using Plackett copula. The research provides a useful stochastic model in assessing the wave-in-deck loads on the square concrete deck.

References

1.
FEMA
,
2006
,
Hurricane Katrina in the Gulf Coast, Mitigation Assessment Team Report, Building Performance Observations, Recommendations, and Technical Guidance, FEMA Report 549
,
Federal Emergency Management Agency
,
New York
.
2.
Wei
,
K.
,
Arwade
,
S. R.
,
Myers
,
A. T.
,
Valamanesh
,
V.
, and
Pang
,
W.
,
2017
, “
Effect of Wind and Wave Directionality on the Structural Performance of Non-Operational Offshore Wind Turbines Supported by Jackets During Hurricanes
,”
Wind Energy
,
20
(
2
), pp.
289
303
. 10.1002/we.2006
3.
Wei
,
K.
,
Liu
,
Q.
, and
Qin
,
S.
,
2019
, “
Nonlinear Assessment of Offshore Steel Trestle Subjected to Wave and Current Loads
,”
Ships Offshore Struc.
, pp.
1
13
. 10.1080/17445302.2019.1661621
4.
Bea
,
R. G.
,
Iversen
,
R.
, and
Xu
,
T.
,
2001
, “
Wave-in-Deck Forces on Offshore Platforms
,”
ASME J. Offshore Mech. Arct. Eng.
,
123
(
1
), pp.
10
21
. 10.1115/1.1342160
5.
Wei
,
K.
,
Myers
,
A. T.
, and
Arwade
,
S. R.
,
2017
, “
Dynamic Effects in the Response of Offshore Wind Turbines Supported by Jackets Under Wave Loading
,”
Eng. Struct.
,
142
, pp.
36
45
. 10.1016/j.engstruct.2017.03.074
6.
Ti
,
Z.
,
Wei
,
K.
,
Li
,
Y.
, and
Xu
,
B.
,
2020
, “
Effect of Wave Spectral Variability on Stochastic Response of a Long-Span Bridge Subjected to Random Waves During Tropical Cyclones
,”
J. Bridge Eng.
,
25
(
1
), p.
04019118
.
7.
Wei
,
K.
,
Arwade
,
S. R.
, and
Myers
,
A. T.
,
2014
, “
Incremental Wind-Wave Analysis of the Structural Capacity of Offshore Wind Turbine Support Structures Under Extreme Loading
,”
Eng. Struct.
,
79
, pp.
58
69
. 10.1016/j.engstruct.2014.08.010
8.
Kaplan
,
P.
,
Murray
,
J. J.
, and
Yu
,
W. C.
,
1995
, “
Theoretical Analysis of Wave Impact Forces on Platform Deck Structures
,”
Proceedings of the 14th International Conference on Offshore Mechanics and Arctic Engineering (OMAE)
,
Copenhagen, Denmark
,
June 18–22
.
9.
American Petroleum Institute (API)
,
2000
, “Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Working Stress Design,”
API Recommended Practice 2A-WSD
,
Washington, DC
.
10.
Cuomo
,
G.
,
Tirindelli
,
M.
, and
Allsop
,
W.
,
2007
, “
Wave-in-Deck Loads on Exposed Jetties
,”
Coastal Eng.
,
54
(
9
), pp.
657
679
. 10.1016/j.coastaleng.2007.01.010
11.
Bea
,
R. G.
,
Xu
,
T.
,
Stear
,
J.
, and
Ramos
,
R.
,
1999
, “
Wave Forces on Decks of Offshore Platforms
,”
J. Waterw. Port. Coast.
,
125
(
3
), pp.
136
144
. 10.1061/(ASCE)0733-950X(1999)125:3(136)
12.
Denson
,
K. H.
,
1980
, “
Wave Forces on Causeway-Type Coastal Bridges: Effects of Angle of Wave Incidence and Cross Section Shape
,”
Water Resources Research Institute, Mississippi State University, Department of Civil Engineering, MS
,
Report No. MSHD-RD-80-070
, p.
242
.
13.
Lu
,
X.
,
Kumar
,
P.
,
Bahuguni
,
A.
, and
Wu
,
Y.
,
2014
, “
A CFD Study of Focused Extreme Wave Impact on Decks of Offshore Structures
,”
Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE)
,
San Francisco, CA
,
June 8–13
.
14.
Chen
,
Y.
,
Wu
,
Y.
,
Bahuguni
,
A.
,
Gullman-Strand
,
J.
,
Lv
,
X.
,
Lou
,
J.
, and
Ren
,
W.
,
2018
, “
Directional Wave-in-Deck Loading on Offshore Structures with Porous and Plated Decks With Supporting I-Beams
,”
Coastal Eng.
,
137
, pp.
79
91
. 10.1016/j.coastaleng.2018.03.009
15.
Libot
,
M. A.
,
2012
, “
Wave-in-Deck Loading
,”
1st Civil and Environmental Engineering Student Conference
,
Imperial College London, UK
,
June 25–26
.
16.
Golafshani
,
A. A.
,
Bagheri
,
V.
,
Ebrahimian
,
H.
, and
Holmas
,
T.
,
2011
, “
Incremental Wave Analysis and Its Application to Performance-Based Assessment of Jacket Platforms
,”
J. Constr. Steel Res.
,
67
(
10
), pp.
1649
1657
. 10.1016/j.jcsr.2011.04.008
17.
Raaij
,
K.
, and
Gudmestad
,
O.
,
2007
, “
Wave-in-Deck Loading on Fixed Steel Jacket Decks
,”
Mar. Struct.
,
20
(
3
), pp.
164
184
. 10.1016/j.marstruc.2007.03.003
18.
Cuomo
,
G.
,
Piscopia
,
R.
, and
Allsop
,
W.
,
2011
, “
Evaluation of Wave Impact Loads on Caisson Breakwaters Based on Joint Probability of Impact Maxima and Rise Times
,”
Coastal Eng.
,
58
(
1
), pp.
9
27
. 10.1016/j.coastaleng.2010.08.003
19.
Paulsen
,
B. T.
,
de Sonneville
,
B.
,
van der Meulen
,
M.
, and
Jacobsen
,
N. G.
,
2019
, “
Probability of Wave Slamming and the Magnitude of Slamming Loads on Offshore Wind Turbine Foundations
,”
Coastal Eng.
,
143
, pp.
76
95
. 10.1016/j.coastaleng.2018.10.002
20.
Bagnold
,
R. A.
,
1939
, “
Interim Report on Wave-Pressure Research. (Includes Plates and Photographs)
,”
J. Inst. Civ. Eng.
,
12
(
7
), pp.
202
226
. 10.1680/ijoti.1939.14539
21.
Hattori
,
M.
,
Arami
,
A.
, and
Yui
,
T.
,
1994
, “
Wave Impact Pressure on Vertical Walls Under Breaking Waves of Various Types
,”
Coastal Eng.
,
22
(
1–2
), pp.
79
114
. 10.1016/0378-3839(94)90049-3
22.
Chen
,
X.
,
2016
, “
Impacts of Overtopping Waves on Buildings on Coastal Dikes
,”
Ph.D. thesis
,
TU Delft
.
23.
Weggel
,
J. R.
, and
Maxwell
,
W. H.
,
1970
, “
Numerical Model for Wave Pressure Distributions
,”
J. Waterways Harbors Coastal Eng. Div. ASCE
,
96
(
3
), pp.
623
642
.
24.
Serinaldi
,
F.
, and
Cuomo
,
G.
,
2011
, “
Characterizing Impulsive Wave-in-Deck Loads on Coastal Bridges by Probabilistic Models of Impact Maxima and Rise Times
,”
Coastal Eng.
,
58
(
9
), pp.
908
926
. 10.1016/j.coastaleng.2011.05.010
25.
Streicher
,
M.
,
2019
, “
Loads Induced by Overtopping Bores on Vertical Walls at the end of sea Facing Promenades—A Laboratory Study
,”
Ph.D. thesis
,
Ghent University
.
26.
Chen
,
X.
,
Hofland
,
B.
,
Molenaar
,
W.
,
Capel
,
A.
, and
Van Gent
,
M. R. A.
,
2019
, “
Use of Impulses to Determine the Reaction Force of a Hydraulic Structure With an Overhang due to Wave Impact
,”
Coastal Eng.
,
147
, pp.
75
88
. 10.1016/j.coastaleng.2019.02.003
27.
Waal
,
D. J.
, and
Gelder
,
P. H. A. J. M.
,
2005
, “
Modelling of Extreme Wave Heights and Periods Through Copulas
,”
Extremes
,
8
(
4
), pp.
345
356
. 10.1007/s10687-006-0006-y
28.
Wang
,
Y.
,
Mao
,
X.
, and
Jiang
,
W.
,
2018
, “
Long-term Hazard Analysis of Destructive Storm Surges Using the ADCIRC-SWAN Model: A Case Study of Bohai Sea, China
,”
Int. J. Appl. Earth Obs. Geoinfo.
,
73
, pp.
52
62
. 10.1016/j.jag.2018.03.013
29.
Chen
,
Y.
,
Li
,
J.
,
Pan
,
S.
,
Gan
,
M.
,
Pan
,
Y.
,
Xie
,
D.
, and
Clee
,
S.
,
2019
, “
Joint Probability Analysis of Extreme Wave Heights and Surges Along China’s Coasts
,”
Ocean Eng.
,
177
, pp.
97
107
. 10.1016/j.oceaneng.2018.12.010
30.
Murray
,
J. J.
,
Winso
,
F. N.
, and
Kaplan
,
P.
,
1997
, “
Impact Forces on a Jacket Deck in Regular Waves and Irregular Wave Groups
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
,
May 5–8
.
31.
Stansberg
,
C.
,
Baarholm
,
R.
,
Kristiansen
,
T.
,
Hansen
,
E.
, and
Rortveit
,
G.
,
2005
, “
Extreme Wave Amplification And Impact Loads On Offshore Structures
,”
Offshore Technology Conference
,
Houston, TX
,
May 2–5
.
32.
Schellin
,
T. E.
,
Perić
,
M.
, and
el Moctar
,
O.
,
2011
, “
Wave-in-Deck Load Analysis for a Jack-Up Platform
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
2
), p.
021303
. 10.1115/1.4002047
33.
Guo
,
A.
,
Fang
,
Q.
,
Bai
,
X.
, and
Li
,
H.
,
2015
, “
Hydrodynamic Experiment of the Wave Force Acting on the Superstructures of Coastal Bridges
,”
J. Bridge Eng.
,
20
(
12
), p.
04015012
. 10.1061/(ASCE)BE.1943-5592.0000758
34.
Murray
,
J. J.
,
Kaplan
,
P.
, and
Yu
,
W. C.
,
1995
, “
Experimental and Analytical Studies of Wave Impact Forces on Ekofisk Platform Structures
,”
OTC 7782, Proceedings of the Offshore Technology Conference
,
Richardson, TX
,
May 1–4
.
35.
Plackett
,
R. L.
,
1965
, “
A Class of Bivariate Distributions
,”
J. Am. Stat. Assoc.
,
60
(
310
), pp.
516
522
. 10.1080/01621459.1965.10480807
36.
Sadegh
,
M.
,
Ragno
,
E.
, and
AghaKouchak
,
A.
,
2017
, “
Multivariate Copula Analysis Toolbox (MvCAT): Describing Dependence and Underlying Uncertainty Using a Bayesian Framework
,”
Water Resour. Res.
,
53
(
6
), pp.
5166
5183
. 10.1002/2016WR020242
37.
Xu
,
B.
,
Wei
,
K.
,
Qin
,
S.
, and
Hong
,
J.
,
2020
, “
Experimental Study of Wave Loads on Elevated Pile cap of Pile Group Foundation for sea-Crossing Bridges
,”
Ocean Eng.
,
197
, p.
106896
. 10.1016/j.oceaneng.2019.106896
38.
Abdussamie
,
N.
,
Ojeda
,
R.
,
Thomas
,
G.
, and
Amin
,
W.
,
2017
, “
Measurements of Global and Local Effects of Wave Impact on a Fixed Platform Deck
,”
J. Eng. Maritime Environ.
,
23
(
1
), pp.
212
233
.
39.
Suja-Thauvin
,
L.
,
Krokstad
,
J. R.
,
Bachynski
,
E. E.
, and
de Ridder
,
E.-J.
,
2017
, “
Experimental Results of a Multimode Monopile Offshore Wind Turbine Support Structure Subjected to Steep and Breaking Irregular Waves
,”
Ocean Eng.
,
146
, pp.
339
351
. 10.1016/j.oceaneng.2017.09.024
40.
Chella
,
M. A.
,
Torum
,
A.
, and
Myrhaug
,
D.
,
2012
, “
An Overview of Wave Impact Forces on Offshore Wind Turbine Substructures
,”
Energy Procedia
,
20
, pp.
217
226
. 10.1016/j.egypro.2012.03.022
You do not currently have access to this content.