Abstract

An analytical study is presented here to investigate the scattering of oblique flexural gravity waves by a pair of totally submerged vertically placed porous barriers, located at some distance from each other, for a homogenous fluid flowing over a porous sea-bed. A thin ice-sheet, replacing the usual free surface, is considered as the upper surface where it is treated as a thin elastic plate by following Euler–Bernoulli beam equation. The complete analytical solution, under the assumption of small-amplitude theory and structural response, is acquired by employing eigenfunction expansion and least square method for the problem of flexural gravity waves interacting with the submerged porous barriers. Subsequently, computation for the reflection and transmission coefficients, energy loss and wave forces are carried out and discussed for different parameter values corresponding to the ice-sheet, porous sea-bed, and porous barriers. This study establishes that the oscillatory behavior exhibited by the reflection of the waves. It further shows that when the inertial effect of the porous-effect parameter of the barriers is increased, the minima in wave reflection occur. The vertical porous barriers are found to dissipate a significant portion of the wave energy when an increase in the inertial effect of the porous barriers is affected. The hydrodynamic force on the barriers also follows an oscillatory pattern, and it increases when the length of the barrier is increased. Furthermore, wave transmission decreases significantly due to the energy dissipation by the porous sea-bed. It is demonstrated that corresponding to various structural parameters, almost no reflection and full transmission take place for an impermeable sea-bed and also when only real porosity parameter of the porous sea-bed is considered. The effect of the ice-sheet on the propagation of the flexural waves is also examined by obtaining a number of results for variation of various parameters. Variation in the elastic parameter of the floating ice-sheet is observed to command a considerable influence when the wave impinges upon the submerged vertical porous barriers.

References

1.
Chanda
,
A.
, and
Bora
,
S. N.
,
2020
, “
Investigation of Water Wave Scattering by An Elastic Sea-Bed of Varying Depth in Two Superposed Fluids Covered by An Ice-Sheet
,”
Ocean. Eng.
,
221
, p.
108510
.
2.
Wang
,
C. M.
, and
Tay
,
Z.
,
2011
, “
Very Large Floating Structures: Applications, Research and Development
,”
Procedia. Eng.
,
14
, pp.
62
72
.
3.
Lamas-Pardoa
,
M.
,
Iglesias
,
G.
, and
Carral
,
L.
,
2015
, “
A Review of Very Large Floating Structures (VLFS) for Coastal and Offshore Uses
,”
Ocean. Eng.
,
109
, pp.
677
690
.
4.
Singla
,
S.
,
Martha
,
S. C.
, and
Sahoo
,
T.
,
2018
, “
Mitigation of Structural Responses of a Very Large Floating Structure in the Presence of Vertical Porous Barrier
,”
Ocean. Eng.
,
165
, pp.
505
527
.
5.
Kohout
,
A.
,
Williams
,
M.
,
Dean
,
S.
, and
Meylan
,
M.
,
2014
, “
Storm-induced Sea Ice Breakup and the Implications for Ice Extent
,”
Nature
,
509
, pp.
604
607
.
6.
Williams
,
T. D.
,
Bennetts
,
L. G.
,
Squire
,
V. A.
,
Dumont
,
D.
, and
Bertino
,
L.
,
2013
, “
Wave-ice Interactions in the Marginal Ice Zone. Part 1: Theoretical Foundations
,”
Ocean. Model.
,
71
, pp.
81
91
.
7.
Williams
,
T. D.
,
Rampal
,
P.
, and
Bouillon
,
S.
,
2017
, “
Wave-Ice Interactions in the NeXtSIM Sea-Ice Model
,”
Cryosphere
,
11
, pp.
2117
2135
.
8.
Fox
,
C.
, and
Squire
,
V. A.
,
1990
, “
Reflection and Transmission Characteristics At the Edge of Shore Fast Sea Ice
,”
J. Geophys. Res.
,
95
(
C7
), pp.
1629
1639
.
9.
Fox
,
C.
, and
Squire
,
V. A.
,
1994
, “
On the Oblique Reflexion and Transmission of Ocean Waves At Shore Fast Sea Ice
,”
Philos. Trans. R. Soc. London A
,
347
, pp.
185
218
.
10.
Bennetts
,
L. G.
,
2007
, “
Wave Scattering by Ice Sheets of Varying Thickness
,”
Ph.D. Thesis
,
University of Reading
,
United Kingdom
.
11.
Bennetts
,
L. G.
,
Biggs
,
N. R. T.
, and
Porter
,
D.
,
2007
, “
A Multi-Mode Approximation to Wave Scattering by Ice Sheets of Varying Thickness
,”
J. Fluid. Mech.
,
579
, pp.
413
443
.
12.
Squire
,
V. A.
,
2008
, “
Synergies Between VLFS Hydroelasticity and Sea Ice Research
,”
Int. J. Offshore Polar Eng.
,
18
(
3
), pp.
1
13
.
13.
Watanabe
,
E.
,
Utsunomiya
,
T.
, and
Wang
,
C. M.
,
2004
, “
Hydroelastic Analysis of Pontoon-Type VLFS: a Literature Survey
,”
Engineering Structures
,
26
(
2
), pp.
245
256
.
14.
Chen
,
X.
,
Wu
,
Y.
,
Cui
,
W.
, and
Jensen
,
J. J.
,
2006
, “
Review of Hydroelasticity Theories for Global Response of Marine Structures
,”
Ocean. Eng.
,
33
, pp.
439
457
.
15.
Cho
,
I. H.
, and
Kim
,
M. H.
,
1998
, “
Interaction of a Horizontal Flexible Membrane With Oblique Incident Waves
,”
J. Fluid. Mech.
,
367
, pp.
139
161
.
16.
Cho
,
I. H.
, and
Kim
,
M. H.
,
2000
, “
Interactions of Horizontal Porous Flexible Membrane With Waves
,”
J. Water., Port, Coastal, Ocean Eng.
,
5
, pp.
245
253
.
17.
Hassan
,
U. L. M.
,
Meylan
,
M. H.
, and
Peter
,
M. A.
,
2009
, “
Water-Wave Scattering by Submerged Elastic Plates
,”
Q. J. Mech. Appl. Math.
,
62
(
3
), pp.
321
344
.
18.
Tkacheva
,
L.
,
2013
, “
Interaction of Surface and Flexural-Gravity Waves in Ice Covered With a Vertical Wall
,”
J. Appl. Mech. Tech. Phys.
,
54
, pp.
651
661
.
19.
Behera
,
H.
, and
Sahoo
,
T.
,
2015
, “
Hydroelastic Analysis of Gravity Wave Interaction With Submerged Horizontal Flexible Porous Plate
,”
J. Fluids Struct.
,
54
, pp.
643
660
.
20.
Dalrymple
,
R. A.
, and
Martin
,
P. A.
,
1990
, “
Wave Diffraction Through Offshore Breakwater
,”
J. Water., Port, Coastal, Ocean Eng.
,
116
(
10
), pp.
727
741
.
21.
Porter
,
R.
, and
Evans
,
D. V.
,
1995
, “
Complementary Approximations to Wave Scattering by Vertical Barriers
,”
J. Fluid. Mech.
,
294
(
10
), pp.
155
180
.
22.
Sollitt
,
C. K.
, and
Cross
,
R. H.
,
1972
, “
Wave Transmissions Through Permeable Breakwaters
,”
13th International Conference on Coastal Engineering
,
Vancouver, Canada
, ASCE, pp.
1827
1846
.
23.
Chwang
,
A. T.
,
1983
, “
A Porous Wavemaker Theory
,”
J. Fluid. Mech.
,
132
, pp.
395
406
.
24.
Yu
,
X.
,
1995
, “
Diffraction of Water Waves by Porous Breakwaters
,”
J. Water., Port, Coastal, Ocean Eng.
,
121
(
6
), pp.
275
282
.
25.
Sahoo
,
T.
,
Chan
,
A. T.
, and
Chwang
,
A. T.
,
2000
, “
Scattering of Oblique Surface Waves by Permeable Barriers
,”
J. Water., Port, Coastal, Ocean Eng.
,
126
(
4
), pp.
196
205
.
26.
Li
,
A.
,
Liu
,
Y.
, and
Li
,
H.
,
2015
, “
Accurate Solutions to Water Wave Scattering by Vertical Thin Porous Barriers
,”
Math. Problems Eng.
,
985731
, p.
11
.
27.
Liu
,
Y.
, and
Li
,
Y.
,
2011
, “
Wave Interaction With a Wave Absorbing Double Curtain-wall Breakwater
,”
Ocean. Eng.
,
38
(
10
), pp.
1237
1245
.
28.
Manam
,
S. R.
, and
Sivanesan
,
M.
,
2016
, “
Scattering of Water Waves by Vertical Porous Barriers: An Analytical Approach
,”
Wave Motion
,
67
, pp.
89
101
.
29.
Koley
,
S.
,
Kaligatla
,
R. B.
, and
Sahoo
,
T.
,
2015
, “
Oblique Wave Scattering by a Vertical Flexible Porous Plate
,”
Stud. Appl. Math.
,
135
(
1
), pp.
1
34
.
30.
Koley
,
S.
, and
Sahoo
,
T.
,
2017
, “
Oblique Wave Trapping by Vertical Permeable Membrane Barriers Located Near a Wall
,”
J. Marine Sci. Appl.
,
16
, pp.
490
501
.
31.
Koley
,
S.
, and
Sahoo
,
T.
,
2017
, “
Scattering of Oblique Waves by Permeable Vertical Flexible Membrane Wave Barriers
,”
Appl. Ocean. Res.
,
62
, pp.
156
168
.
32.
Kaligatla
,
R.
,
Koley
,
S.
, and
Sahoo
,
T.
,
2015
, “
Trapping of Surface Gravity Waves by a Vertical Flexible Porous Plate Near a Wall
,”
Z. Angew. Math. Phys.
,
66
, pp.
2677
2702
.
33.
Das
,
S.
, and
Bora
,
S. N.
,
2018
, “
Oblique Water Wave Damping by Two Submerged Thin Vertical Porous Plates of Different Heights
,”
Comput. Appl. Math.
,
37
, pp.
3759
3779
.
34.
Gupta
,
S.
, and
Gayen
,
R.
,
2018
, “
Scattering of Oblique Water Waves by Two Thin Unequal Barriers with Non-uniform Permeability
,”
J. Eng. Math.
,
112
, pp.
37
61
.
35.
Sarkar
,
B.
,
De
,
S.
, and
Roy
,
R.
,
2020
, “
Oblique Wave Scattering by Two Thin Non-uniform Permeable Vertical Walls With Unequal Apertures in Water of Uniform Finite Depth
,”
Waves Random Compl Media
,
36.
Sasmal
,
A.
,
Paul
,
S.
, and
De
,
S.
,
2019
, “
Effect of Porosity on Oblique Wave Diffraction by Two Unequal Vertical Porous Barriers
,”
J. Marine Sci. Appl.
,
18
, pp.
417
432
.
37.
Maiti
,
P.
, and
Mandal
,
B. N.
,
2010
, “
Wave Scattering by a Thin Vertical Barrier Submerged Beneath An Ice-Cover in Deep Water
,”
Appl. Ocean. Res.
,
32
, pp.
367
373
.
38.
Manam
,
S. R.
, and
Kaligatla
,
R. B.
,
2011
, “
Effect of a Submerged Vertical Barrier on Flexural Gravity Waves
,”
Int. J. Eng. Sci.
,
49
, pp.
755
767
.
39.
Behera
,
H.
,
Sahoo
,
T.
, and
Ng
,
C. O.
,
2018
, “
Effect of a Submerged Porous Plate on the Hydroelastic Response of a Very Large Floating Structure
,”
J. Marine Sci. Appl.
,
17
, pp.
564
577
.
40.
Corvaro
,
S.
,
Mancinelli
,
A.
,
Brocchini
,
M.
,
Seta
,
E.
, and
Lorenzoni
,
C.
,
2010
, “
On the Wave Damping Due to a Permeable Seabed
,”
Coastal Eng.
,
57
, pp.
1029
1041
.
41.
Rojanakamthorn
,
S.
,
Isobe
,
M.
, and
Watanabe
,
A.
,
1990
, “
Modeling of Wave Transformation on Submerged Breakwater
,”
Proceedings 22nd ICCE
,
New York
, ASCE, pp.
1060
1073
.
42.
Gu
,
Z.
, and
Wang
,
H.
,
1991
, “
Gravity Waves Over Porous Bottoms
,”
Coastal Eng.
,
15
, pp.
497
524
.
43.
Mase
,
H.
, and
Takeba
,
K.
,
1994
, “
Bragg Scattering of Waves Over Porous Rippled Bed
,”
Proceedings of 24th ICCE
,
Kobe, Japan
, ASCE, pp.
635
649
.
44.
Silva
,
R.
,
Salles
,
P.
, and
Palacio
,
A.
,
2002
, “
Linear Waves Propagating Over a Rapidly Varying Finite Porous Bed
,”
Coastal Eng.
,
44
, pp.
239
260
.
45.
Li
,
J.
, and
Jeng
,
D. S.
,
2008
, “
Response of a Porous Sea-Bed Around Breakwater Heads
,”
Ocean. Eng.
,
35
, pp.
864
886
.
46.
Chanda
,
A.
, and
Bora
,
S.
,
2020
, “
Effect of a Porous Sea-Bed on Water Wave Scattering by Two Thin Vertical Submerged Porous Plates
,”
Eur. J. Mech./B Fluids
,
84
, pp.
250
261
.
47.
Behera
,
H.
,
Ng
,
C. O.
, and
Sahoo
,
T.
,
2018
, “
Oblique Wave Scattering by a Floating Elastic Plate Over a Porous Bed in Single and Two-layer Fluid Systems
,”
Ocean. Eng.
,
159
, pp.
280
294
.
48.
Fox
,
C.
, and
Squire
,
V. A.
,
1991
, “
Coupling Between An Ocean and An Ice Shelf
,”
Ann. Glaciol.
,
15
, pp.
101
108
.
49.
Maiti
,
P.
, and
Mandal
,
B. N.
,
2014
, “
Water Wave Scattering by An Elastic Plate Floating in An Ocean With a Porous Bed
,”
Appl. Ocean. Res.
,
47
, pp.
73
84
.
50.
Martha
,
S. C.
,
Bora
,
S. N.
, and
Chakrabarti
,
A.
,
2007
, “
Oblique Water Wave Scattering by Small Undulation on a Porous Sea-Bed
,”
Appl. Ocean. Res.
,
29
, pp.
86
90
.
51.
Cox
,
R.
,
Horton
,
P.
, and
Bettington
,
S.
,
1998
, “
Double Walled, Low Reflection Wave Barriers
,”
Proceedings of the 26th Coastal Engineering Conference
,
Copenhagen, Denmark
, ASCE, pp.
2221
2234
.
52.
Kelman
,
R. B.
, and
Chester
,
A. K.
,
1973
, “
Least Square Approximations for Dual Trigonometric Series
,”
Glasgow Math. J.
,
14
, pp.
111
119
.
53.
Kaligatla
,
R.
,
Manisha
, and
Sahoo
,
T.
,
2017
, “
Wave Trapping by Dual Porous Barriers Near a Wall in the Presence of Bottom Undulation
,”
J. Marine Sci. Appl.
,
16
, pp.
286
297
.
You do not currently have access to this content.