Abstract

Ice gouging is one of the main threats to the safety of the subsea pipelines buried in Arctic coastal regions. Determining the best pipeline burial depth relies on free-field ice gouging analysis and obtaining the resultant subgouge soil deformations. Therefore, improving the accuracy and efficiency of the free-field ice gouging analysis is a key demand in daily engineering practice. The pressure-induced by ice keel through the ice gouging process causes the seabed soil to undergo large localized plastic deformation, where the classical Lagrangian method confronts mesh instability challenges. Also, the conventional Mohr–Coulomb soil model is not able to account for the strain-rate dependency and strain-softening effects, which are significant in ice gouging event. In this study, free-field ice gouging in clay was simulated using a coupled Eulerian–Lagrangian approach. The strain-rate dependency and strain-softening effects were incorporated by developing a user-defined subroutine and incremental updating of the undrained shear strength in abaqus. The comparison of the model predictions with published numerical and experimental studies showed a significant improvement of accuracy. A comprehensive parametric study was also conducted to investigate the effect of various model parameters on the seabed response to ice gouging.

References

1.
Clark
,
J. I.
, and
Guigné
,
J. Y.
,
1988
, “
Twenty-Fifth Anniversary Special Paper: Marine Geotechnical Engineering in Canada
,”
Can. Geotech. J.
,
25
(
2
), pp.
179
198
.
2.
Clark
,
J. I.
, and
Landva
,
J.
,
1988
, “
Geotechnical Aspects of Seabed Pits in the Grand Banks Area
,”
Can. Geotech. J.
,
25
(
3
), pp.
448
454
.
3.
Winters
,
W. J.
, and
Lee
,
H. J.
,
1984
, “Geotechnical Properties of Samples From Borings Obtained in the Chukchi Sea, Alaska,” USGS Report No. 85-23.
4.
Pike
,
K.
, and
Kenny
,
S.
,
2012
, “
Advanced Continuum Modelling of the Ice Gouge Process: Assessment of Keel Shape Effect and Geotechnical Data
,”
Proceedings of the 22nd International Offshore and Polar Engineering Conference
, Paper No. ISOPE-12-TPC-0464.
5.
Babaei
,
H.
, and
Sudom
,
D.
,
2014
, “
Ice–Seabed Gouging Database: Review and Analysis of Available Numerical Models
,”
Proceedings of the Offshore Technology Conference
, Paper No. OTC-24603.
6.
Liferov
,
P.
,
Shkhinek
,
K. N.
,
Vitali
,
L.
, and
Serre
,
N.
,
2007
, “
Ice Gouging Study—Actions and Action Effects
,”
Proceedings of the 19th International Conference on Port and Ocean Engineering Under Arctic Conditions (POAC)
,
Dalian, China
,
June 27–30
, pp.
774
786
.
7.
Eskandari
,
F.
,
Phillips
,
R.
, and
Hawlader
,
B.
,
2012
, “
Finite Element Analyses of Seabed Response to Ice Keel Gouging
,”
Proceedings of the 65th Canadian Geotechnical Conference (GeoManitoba)
,
Winnipeg, Manitoba, Canada
,
Sept. 30–Oct. 3
, p.
8
.
8.
Rossiter
,
C.
, and
Kenny
,
S.
,
2012
, “
Assessment of Ice–Soil Interactions: Continuum Modelling in Clays
,”
Proceedings of the 22nd International Offshore and Polar Engineering Conference
, Paper No. ISOPE-12-TPC-0304.
9.
Phillips
,
R.
, and
Barrett
,
J.
,
2011
, “
Ice Keel–Seabed Interaction: Numerical Modelling for Sands
,”
Port and Ocean Engineering Under Arctic Conditions (POAC)
,
Montréal, Canada
,
July 10–14
, p.
10
.
10.
Phillips
,
R.
,
Barrett
,
J. A.
, and
Al-Showaiter
,
A.
,
2010
, “
Ice Keel–Seabed Interaction: Numerical Modelling Validation
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
,
May 3–6
, p.
13
.
11.
Abdalla
,
B.
,
Pike
,
K.
,
Eltaher
,
A.
,
Jukes
,
P.
, and
Duron
,
B.
,
2009
, “
Development and Validation of a Coupled Eulerian Lagrangian Finite Element Ice Scour Model
,”
Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2009)
,
Honolulu, HI
,
May 31–June 5
, p.
6
.
12.
Sayed
,
M.
, and
Timco
,
G. W.
,
2009
, “
A Numerical Model of Iceberg Scour
,”
Cold Reg. Sci. Technol.
,
55
(
1
), pp.
103
110
.
13.
Konuk
,
I.
,
Liferov
,
P.
, and
Loset
,
S.
,
2007
, “
Challenges in Modelling Ice Gouge and Pipeline Response
,”
Proceedings of the 19th International POAC Conference
,
Dalian, China
,
June 27–30
, pp.
760
773
.
14.
Kenny
,
S.
,
Barrett
,
J.
,
Phillips
,
R.
, and
Popescu
,
R.
,
2007
, “
Integrating Geohazard Demand and Structural Capacity Modelling Within a Probabilistic Design Framework for Offshore Arctic Pipelines
,”
17th International Offshore and Polar Engineering Conference
,
Lisbon, Portugal
,
July 1–6
, pp.
3057
3064
.
15.
Kenny
,
S.
,
Phillips
,
R.
, and
Nobahar
,
A.
,
2005
, “
PRISE Numerical Studies on Subgouge Deformations and Pipeline/Soil Interaction Analysis
,”
Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions (POAC)
,
Potsdam, NY
,
June 26–30
, p.
10
.
16.
Konuk
,
I.
, and
Gracie
,
R.
,
2004
, “
A 3-Dimensional Eulerian Finite Element Model for Ice Scour
,”
Proceedings of the Fifth International Pipeline Conference
,
Calgary, Alberta, Canada
,
Oct. 4–8
, pp.
1911
1918
.
17.
Yang
,
Q. S.
, and
Poorooshasb
,
H. B.
,
1997
, “
Numerical Modeling of Seabed Ice Scour
,”
Comput. Geotech.
,
21
(
1
), pp.
1
20
.
18.
Allersma
,
H. G. B.
, and
Schoonbeek
,
I. S. S.
,
2005
, “
Centrifuge Modelling of Scouring Ice Keels in Clay
,”
International Conference on Offshore and Polar Engineering, ISOPE 2005
,
Seoul
,
June 19–24
, Paper No. 2005-JSC-427, pp.
404
409
.
19.
Phillips
,
R.
,
Clark
,
J. I.
, and
Kenny
,
S.
,
2005
, “
PRISE Studies on Gouge Forces and Subgouge Deformations
,”
Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions (POAC)
,
Potsdam, NY
,
June 26–30
, p.
10
.
20.
Barrette
,
P.
, and
Sudom
,
D.
,
2012
, “
Physical Simulations of Seabed Scouring by Ice: Review and Database
,”
Proceedings of the 22nd International Offshore and Polar Engineering Conference, ISOPE
,
Rhodes, Greece
,
June 17–22
, pp.
381
388
.
21.
Panico
,
M.
,
Lele
,
S. P.
,
Hamilton
,
J. M.
,
Arslan
,
H.
, and
Cheng
,
W.
,
2012
, “
Advanced Ice Gouging Continuum Models: Comparison With Centrifuge Test Results
,”
Proceedings of the 22nd International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers
,
Rhodes, Greece
,
June 17–22
, pp.
504
510
.
22.
Yang
,
Q. S.
,
Poorooshasb
,
H. B.
, and
Lach
,
P. R.
,
1996
, “
Centrifuge Modeling and Numerical Simulation of Ice Scour
,”
Soils Found.
,
36
(
1
), p.
85
96
.
23.
Lach
,
P. R.
,
1996
, “
Centrifuge Modelling of Large Soil Deformation Due to Ice Scour
,”
Ph.D. thesis
,
Memorial University of Newfoundland
,
Canada
.
24.
Woodworth-Lynas
,
C.
,
Nixon
,
D.
,
Phillips
,
R.
, and
Palmer
,
A.
,
1996
, “
Subgouge Deformations and the Security of Arctic Marine Pipelines
,”
Proceedings of the 28th OTC
, Vol. 4, Paper No. 8222, pp.
657
664
.
25.
Phillips
,
R.
, and
Barrett
,
J.
,
2012
, “
PIRAM: Pipeline Response to Ice Gouging
,”
Proceedings of the Arctic Technology Conference
,
Houston, TX
,
Dec. 3–5
, p.
6
.
26.
Kenny
,
S.
,
Phillips
,
R.
,
McKenna
,
R. F.
, and
Clark
,
J. I.
,
2000
, “
Response of Buried Arctic Marine Pipelines to Ice Gouge Events
,”
Proceedings of the OMAE
, Paper No. OMAE00-5001.
27.
Peek
,
R.
, and
Nobahar
,
A.
,
2012
, “
Ice Gouging Over a Buried Pipeline: Superposition Error of Simple Beam-and-Spring Models
,”
ASCE Int. J. Geomech.
,
12
(
4
), pp.
508
516
.
28.
Pike
,
K.
, and
Kenny
,
S.
,
2016
, “
Offshore Pipelines and Ice Gouge Geohazards: Comparative Performance Assessment of Decoupled Structural and Coupled Continuum Models
,”
Can. Geotech. J.
,
53
(
11
), pp.
1866
1881
.
29.
Nyman
,
K.
,
1984
, “
Soil Response Against Oblique Motion of Pipes
,”
J. Transp. Eng.
,
110
(
2
), pp.
190
202
.
30.
Phillips
,
R.
,
Nobahar
,
A.
, and
Zhou
,
J.
,
2004
, “
Combined Axial and Lateral Pipe–Soil Interaction Relationships
,”
Proceedings of the International Pipeline Conference
, Paper No. IPC-0144.
31.
Rossiter
,
C.
, and
Kenny
,
S.
,
2012
, “
Evaluation of Lateral-Vertical Pipe/Soil Interaction in Clay
,”
Proceedings of the Offshore Technology Conference
, Paper No. OTC-23735.
32.
Daiyan
,
N.
,
2013
, “
Investigating Soil/Pipeline Interaction During Oblique Relative Movements
,”
Ph.D. thesis
,
Memorial University of Newfoundland
,
Canada
.
33.
Kenny
,
S.
, and
Jukes
,
P.
,
2015
, “Pipeline/soil interaction modelling in support of pipeline engineering design and integrity,”
Oil and Gas Pipelines: Integrity and Safety Handbook
,
R. W.
Revie
, ed.,
John Wiley and Sons Ltd.
,
Chichester, West Sussex, UK
.
34.
Biscontin
,
G.
, and
Pestana
,
J. M.
,
2001
, “
Influence of Peripheral Velocity on Vane Shear Strength of an Artificial Clay
,”
Geotech. Test. J.
,
24
(
4
), pp.
423
429
.
35.
DeGroot
,
D. J.
,
DeJong
,
J. T.
,
Yafrate
,
N. J.
,
Landon
,
M. M.
, and
Sheahan
,
T. C.
,
2007
, “
Application of Recent Developments in Terrestrial Soft Sediment Characterization Methods to Offshore Environments
,”
Proceedings of the Offshore Technology Conference
,
Houston
, Paper No. OTC 18737.
36.
Lunne
,
T.
, and
Andersen
,
K. H.
,
2007
, “
Soft Clay Shear Strength Parameters for Deepwater Geotechnical Design
,”
Proceedings of the Sixth International Offshore Site Investigation and Geotechnics Conference: Confronting New Challenges and Sharing Knowledge, Vol. 1, Society for Underwater Technology
,
London, UK
,
Sept. 11–13
, pp.
151
176
.
37.
DeJong
,
J.
,
DeGroot
,
D.
, and
Yafrate
,
N.
,
2012
, “
Evaluation of Undrained Shear Strength Using Full-Flow Penetrometers
,”
J. Geotech. Geoenvironmental Eng.
,
138
(
6
), pp.
765
767
.
38.
Hossain
,
M. S.
, and
Randolph
,
M. F.
,
2009
, “
Effect of Strain Rate and Strain Softening on the Penetration Resistance of Spudcan Foundations on Clay
,”
Int. J. Geomech.
,
9
(
3
), pp.
122
132
.
39.
Abaqus
,
2020
, Analysis User Manual—Abaqus 6.2, Simulia Inc., Dassault Systemes.
40.
Einav
,
I.
, and
Randolph
,
M. F.
,
2005
, “
Combining Upper Bound and Strain Path Methods for Evaluating Penetration Ristance
,”
Int. J. Numer. Methods Eng.
,
63
(
14
), pp.
1991
2016
.
41.
Fadaifard
,
H.
, and
Tassoulas
,
J. L.
,
2014
, “
Numerical Modeling of Coupled Seabed Scour and Pipe Interaction
,”
Int. J. Solids Struct.
,
51
(
19–20
), pp.
3449
3460
.
42.
Nematzadeh
,
A.
, and
Shiri
,
H.
,
2020
, “
The Influence of Non-Linear Stress–Strain Behavior of Dense Sand on Seabed Response to Ice Gouging
,”
Cold Reg. Sci. Technol.
,
170
(
1
), p.
102929
.
43.
Banneyake
,
R.
,
Hossain
,
M. K.
,
Eltaher
,
A.
,
Nguyen
,
T.
, and
Jukes
,
P.
,
2011
, “
Ice–Soil Pipeline Interactions Using Coupled Eulerian–Lagrangian (CEL) Ice Gouge Simulations Extracts From Ice Pipe JIP
,”
Paper Presented at the OTC Arctic Technology Conference.
,
Houston, TX
,
Feb. 7–9
,
Paper No. OTC 22047
.
44.
Palmer
,
A. C.
,
1997
, “
Geotechnical Evidence As a Guide to Pipeline Burail Depth
,”
Can. Geotech. J.
,
34
(
6
), pp.
1002
1003
.
45.
Díaz-Rodríguez
,
J. A.
,
Martínez-Vasquez
,
J. J.
, and
Santamarina
,
J. C.
,
2009
, “
Strain-Rate Effects in Mexico City Soil
,”
J. Geotech. Geoenvironmental Eng.
,
135
(
2
), pp.
300
305
.
46.
Vaid
,
Y. P.
,
Robertson
,
P. K.
, and
Campanella
,
R. G.
,
1979
, “
Strain Rate Behaviour of Saint-Jean-Vianney Clay
,”
Can. Geotech. J.
,
16
(
1
), pp.
34
42
.
47.
Casacrande
,
A.
, and
Wilson
,
S.
,
1951
, “
Effect of Rate of Loading on the Strength of Clays and Shales at Constant Water Content
,”
Géotechnique
,
2
(
3
), pp.
251
263
.
48.
Lehane
,
B.
,
O’Loughlin
,
C.
,
Gaudin
,
C.
, and
Randolph
,
M.
,
2009
, “
Rate Effects on Penetrometer Resistance in Kaolin
,”
Géotechnique
,
59
(
1
), pp.
41
52
.
49.
Graham
,
J.
,
Crooks
,
J. H. A.
, and
Bell
,
A. L.
,
1983
, “
Time Effects on the Stress–Strain Behaviour of Natural Soft Clays
,”
Geotechnique
,
33
(
3
), pp.
327
340
.
50.
Schoonbeek
,
I. S. S.
, and
Allersma
,
H. G. B.
,
2006
, “
Centrifuge Modelling of Scouring Ice Keels in Clay
,”
Proceedings of the 6th International Conference on Physical Modelling in Geotechnics, ICPMG, Taylor and Francis/Balkema
,
Hong Kong, China
,
Aug. 4–6
, pp.
1291
1296
.
51.
Pike
,
K.
,
Seo
,
D.
, and
Kenny
,
S.
,
2011
, “
Continuum Modelling of Ice Gouge Events: Observations and Assessment
,”
Proceedings of the Offshore Technology Conference
, Paper No. OTC-22097.
52.
Chatterjee
,
S.
,
Randolph
,
M. F.
, and
White
,
D. J.
,
2012
, “
The Effects of Penetration Rate and Strain Softening on the Vertical Penetration Resistance of Seabed Pipelines
,”
Géotechnique
,
62
(
7
), pp.
573
582
.
53.
Chatterjee
,
S.
,
Randolph
,
M. F.
, and
White
,
D. J.
,
2012
, “
Numerical Simulations of Pipe–Soil Interaction During Large Lateral Movements on Clay
,”
Géotechnique
,
62
(
8
), pp.
693
705
.
54.
Dutta
,
S.
,
Hawlader
,
B.
, and
Phillips
,
R.
,
2015
, “
Finite Element Modeling of Partially Embedded Pipelines in Clay Seabed Using Coupled Eulerian–Lagrangian Method
,”
Can. Geotech. J.
,
52
(
1
), pp.
58
72
.
55.
Ghorai
,
B.
, and
Chatterjee
,
S.
,
2017
, “
Influences of Strain Rate and Soil Remoulding on Initial Break-Out Resistance of Deepwater On-Bottom Pipelines
,”
Comput. Geotech.
,
91
(
1
), pp.
82
92
.
56.
Wang
,
D.
,
White
,
D. J.
, and
Randolph
,
M. F.
,
2010
, “
Large-Deformation Finite Element Analysis of Pipe Penetration and Large-Amplitude Lateral Displacement
,”
Can. Geotech. J.
,
47
(
8
), pp.
842
856
.
57.
Zhou
,
H.
, and
Randolph
,
M. F.
,
2007
, “
Computational Techniques and Shear Band Development for Cylindrical and Spherical Penetrometers in Strain-Softening Clay
,”
Int. J. Geomech.
,
7
(
4
), pp.
287
295
.
58.
Zhou
,
H.
, and
Randolph
,
M. F.
,
2009
, “
Resistance of Full-Flow Penetrometers in Rate-Dependent and Strain-Softening Clay
,”
Géotechnique
,
59
(
2
), pp.
79
86
.
59.
Schoonbeek
,
I. S. S.
,
Xin
,
M. X.
,
Van Kesteren
,
W. G. M.
, and
Been
,
K.
,
2006
, “
Slip Line Field Solutions As an Approach to Understand Ice Subgouge Deformation Patterns
,”
Proceedings of the 16th International Offshore and Polar Engineering Conference
,
San Francisco, CA
,
May 28–June 2
, pp.
628
633
.
60.
Johnson
,
P. C.
, and
Jackson
,
R.
,
1987
, “
Frictional–Collisional Constitutive Relations for Granular Materials With Application to Plane Shearing
,”
J. Fluid Mech.
,
176
(
1
), pp.
67
93
.
61.
Konrad
,
J. M.
, and
Law
,
K. T.
,
1987
, “
Undrained Shear Strength From Piezocone Tests
,”
Can. Geotech. J.
,
24
(
3
), pp.
392
405
.
62.
Schnaid
,
F.
,
Sills
,
G. C.
,
Soares
,
J. M.
, and
Nyirenda
,
Z.
,
1997
, “
Predictions of the Coefficient of Consolidation From Piezocone Tests
,”
Can. Geotech. J.
,
34
(
2
), pp.
315
327
.
63.
Mayne
,
P. W.
,
2007
, “Cone Penetration Testing State of Practice,” NCHRP Project 20-05.
64.
Keaveny
,
J.
, and
Mitchell
,
J. K.
,
1986
, “
Strength of Fine-Grained Soils Using the Piezocone
,”
Use of In Situ Tests in Geotechnical Engineering (ASCE Geotechnical Special Publication No. 6)
,
New York, USA
,
June 23–25
, pp.
668
685
.
65.
Dayal
,
U.
, and
Allen
,
J. H.
,
1975
, “
The Effect of Penetration Rate on the Strength of Remolded Clay and Sand Samples
,”
Can. Geotech. J.
,
12
(
3
), pp.
336
348
.
66.
Kim
,
Y. H.
,
Hossain
,
M. S.
, and
Wang
,
D.
,
2015
, “
Effect of Strain Rate and Strain Softening on Embedment Depth of a Torpedo Anchor in Clay
,”
Ocean Eng.
,
108
(
1
), pp.
704
715
.
67.
Raie
,
M.
, and
Tassoulas
,
J.
,
2009
, “
Installation of Torpedo Anchors: Numerical Modeling
,”
J. Geotech. Geoenvironmental Eng.
,
135
(
12
), pp.
1805
1813
.
68.
Kvalstad
,
T. J.
,
Nadim
,
F.
, and
Harbitz
,
C. B.
,
2001
, “
Deepwater Geohazards: Geotechnical Concerns and Solutions
,”
Proceedings of the Offshore Technology Conference
,
Houston
, Paper No. OTC 12958.
69.
Andersen
,
K. H.
, and
Jostad
,
H. P.
,
2004
, “
Shear Strength Along Inside of Suction Anchor Skirt Wall in Clay
,”
Proceedings of the Offshore Technology Conference
,
Houston
, Paper No. OTC 16844.
70.
Randolph
,
M. F.
,
2004
, “
Characterization of Soft Sediments
,”
Keynote Lecture, Proceedings of the Second International Conference on Site Characterization
,
Porto, Portugal
,
Jan. 1
, pp.
209
231
.
71.
Chen
,
W.
,
2005
, “
Uniaxial Behaviour of Suction Caissons in Soft Deposits in Deepwater
,”
Ph.D. thesis
,
The University of Western Australia
,
Perth, Australia
.
72.
Palmer
,
A. C.
,
Konuk
,
I.
,
Niedoroda
,
A. W.
,
Been
,
K.
, and
Croasdale
,
K. R.
,
2005
, “
Arctic Seabed Ice Gouging and Large Sub-Gouge Deformations
,”
First International Symposium on Frontiers in Offshore Geotechnics
,
Perth, Australia
,
Sept. 19–21
, pp.
645
650
.
73.
Airey
,
D. W.
,
1984
, “
Clays in Circular Simple Shear Apparatus
,”
Ph.D. thesis
,
University of Cambridge
,
Cambridge, UK
.
74.
Al-Tabbaa
,
A.
,
1987
, “
Permeability and Stress–Strain Response of Speswhite Kaolin
,”
Ph.D. thesis
,
University of Cambridge
,
Cambridge, UK
, p.
133
.
75.
Crooks
,
J. H. A.
,
Jefferies
,
M. G.
,
Becker
,
D. E.
, and
Been
,
K.
,
1986
, “
Geotechnical Properties of Beaufort Sea Clays
,”
Proceedings of the Third Canadian Conference on Marine Geotechnical Engineering
,
St. John’s, NL, Canada
, pp.
329
343
.
76.
Rattley
,
M.
,
Richards
,
D.
, and
Lehane
,
B.
,
2008
, “
Uplift Performance of Transmission Tower Foundations Embedded in Clay
,”
J. Geotech. Geoenvironmental Eng.
,
134
(
4
), pp.
531
540
.
77.
Minerals Management Service
,
2008
, “Design Options for Offshore Pipelines in the US Beaufort and Chukchi Seas,” Report No. R-07-078-519.
You do not currently have access to this content.