Abstract

This paper numerically investigates the flow-induced vibration of a circular cylinder attached with front and/or rear splitter plates at a low Reynolds number of Re = 120. The effects of plate length and plate location on the hydrodynamic coefficient, vibration response, and flow wake are examined and discussed in detail. The results reveal that the hydrodynamic coefficient of the cylinder with a single rear plate is significantly reduced at Ur ≤ 8 (Ur is the reduced velocity), resulting in the vortex-induced vibration (VIV) suppression. Nevertheless, the galloping is excited at Ur > 8 due to the hydrodynamic instability, accompanied by the jump of response amplitude and hydrodynamic force, as well as the abrupt drop of response frequency. The alternate reattachment of shear layers on the plate surface introduces an extra lift force that strengthens the vibration response. By introducing an individual front plate, significant VIV suppression is achieved. The vibration exhibits variable patterns when the cylinder is equipped with bilateral plates, including the typical VIV mode, weak VIV-galloping coupling mode, and IB-galloping-DB mode (IB and DB represent the initial branch and desynchronization branch of VIV, respectively). The galloping branch in IB-galloping-DB mode is observed with an abrupt drop in response frequency, as well as a tiny time lag between the displacement and lift force. The vibration response is significantly suppressed when the cylinder is simultaneously equipped with a 1D front plate and a 1–2D rear plate due to the streamlined profile.

References

1.
Wang
,
J. L.
,
Zhou
,
S. X.
,
Zhang
,
Z. E.
, and
Yurchenko
,
D.
,
2019
, “
High-Performance Piezoelectric Wind Energy Harvester With Y-Shaped Attachments
,”
Energy Convers. Manage.
,
181
, pp.
645
652
.
2.
Wang
,
J. L.
,
Geng
,
L. F.
,
Zhou
,
S. X.
,
Zhang
,
Z. E.
,
Lai
,
Z. H.
, and
Yurchenko
,
D.
,
2020
, “
Design, Modeling and Experiments of Broadband Tristable Galloping Piezoelectric Energy Harvester
,”
Acta Mech. Sinica.
,
36
(
3
), pp.
592
605
.
3.
Yang
,
K.
,
Wang
,
J. L.
, and
Yurchenko
,
D.
,
2019
, “
A Double-Beam Piezo-Magneto-Elastic Wind Energy Harvester for Improving the Galloping-Based Energy Harvesting
,”
Appl. Phys. Lett.
,
115
(
19
), p.
193901
.
4.
Zhu
,
H. J.
,
Tang
,
T.
,
Gao
,
Y.
,
Zhou
,
T. M.
, and
Wang
,
J. L.
,
2021
, “
Flow-Induced Vibration of a Trapezoidal Cylinder Placed at Typical Flow Orientations
,”
J. Fluids Struct.
,
103
, p.
103291
.
5.
Zhu
,
H. J.
,
Tang
,
T.
,
Zhou
,
T. M.
,
Liu
,
H. Y.
, and
Zhong
,
J. W.
,
2020a
, “
Flow Structures Around Trapezoidal Cylinders and Their Hydrodynamic Characteristics: Effects of the Base Length Ratio and Attack Angle
,”
Phys. Fluids
,
32
(
10
), p.
103606
.
6.
Choi
,
H.
,
Jeon
,
W. P.
, and
Kim
,
J.
,
2008
, “
Control of Flow Over a Bluff Body
,”
Annu. Rev. Fluids Mech.
,
40
(
1
), pp.
113
139
.
7.
Owen
,
J. C.
,
Bearman
,
P. W.
, and
Szewczyk
,
A. A.
,
2001
, “
Passive Control of VIV With Drag Reduction
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
597
605
.
8.
Rashidi
,
S.
,
Hayatdavoodi
,
M.
, and
Esfahani
,
J. A.
,
2016
, “
Vortex Shedding Suppression and Wake Control: A Review
,”
Ocean Eng.
,
126
, pp.
57
80
.
9.
Zdravkovich
,
M. M.
,
1981
, “
Review and Classification of Various Aerodynamic and Hydrodynamic Means for Suppressing Vortex Shedding
,”
J. Wind Eng. Ind. Aerod.
,
7
(
2
), pp.
145
189
.
10.
Roshko
,
A.
,
1954
, “
On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies
,”
NACA Technical Notes
.
11.
Apelt
,
C. J.
,
West
,
G. S.
, and
Szewczyk
,
A. A.
,
1973
, “
The Effects of Wake Splitter Plates on the Flow Past a Circular Cylinder in the Range l04 < R < 5 × l04
,”
J. Fluids Mech.
,
61
(
1
), pp.
187
198
.
12.
Fiedler
,
H. E.
, and
Fernholz
,
H. H.
,
1990
, “
On Management and Control of Turbulent Shear Flows
,”
Prog. Aerosp. Sci.
,
27
(
4
), pp.
305
387
.
13.
Kawai
,
H.
,
1990
, “
Discrete Vortex Simulation for Flow Around a Circular Cylinder With a Splitter Plate
,”
J. Wind Eng. Ind. Aerodyn.
,
33
(
1–2
), pp.
153
160
.
14.
Bearman
,
P. W.
,
1965
, “
Investigation of the Flow Behind a Two-Dimensional Model With a Blunt Trailing Edge and Fitted With Splitter Plates
,”
J. Fluids Mech.
,
21
(
2
), pp.
241
255
.
15.
Kwon
,
K.
, and
Choi
,
H.
,
1996
, “
Control of Laminar Vortex Shedding Behind a Circular Cylinder Using Splitter Plate
,”
Phys. Fluids
,
8
(
2
), p.
479
.
16.
Schaefer
,
J. W.
, and
Eskinazi
,
S.
,
1959
, “
An Analysis of the Vortex Street Generated in a Viscous Fluid
,”
J. Fluids Mech.
,
6
(
2
), pp.
241
260
.
17.
Zhu
,
H. J.
,
Li
,
G. M.
, and
Wang
,
J. L.
,
2020b
, “
Flow-Induced Vibration of a Circular Cylinder With Splitter Plates Placed Upstream and Downstream Individually and Simultaneously
,”
Appl. Ocean Res.
,
97
, p.
102084
.
18.
Hu
,
Z. M.
,
Wang
,
J. S.
,
Sun
,
Y. K.
, and
Zheng
,
H. X.
,
2021
, “
Flow-Induced Vibration Suppression for a Single Cylinder and One-Fixed-One-Free Tandem Cylinders With Double Tail Splitter Plates
,”
J. Fluids Struct.
,
106
, p.
103373
.
19.
Sahu
,
T. R.
,
Furquan
,
M.
,
Jaiswal
,
Y.
, and
Mittal
,
S.
,
2019
, “
Flow-Induced Vibration of a Circular Cylinder With Rigid Splitter Plate
,”
J. Fluids Struct.
,
89
, pp.
244
256
.
20.
Parkinson
,
G.
,
1989
, “
Phenomena and Modelling of Flow-Induced Vibrations of Bluff Bodies
,”
Prog. Aerosp. Sci
,
26
(
2
), pp.
169
224
.
21.
Sarpkaya
,
T.
,
1979
, “
Vortex-Induced Oscillations
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
241
258
.
22.
Bearman
,
P. W.
,
1984
, “
Vortex Shedding From Oscillating Bluff Bodies
,”
Annu. Rev. Fluids Mech.
,
16
(
1
), pp.
195
222
.
23.
Nakamura
,
Y.
,
1988
, “
Recent Research Into Bluff-Body Flutter
,”
J. Wind Eng. Ind. Aerodyn.
,
33
(
1–2
), pp.
1
10
.
24.
Parkinson
,
G. V.
,
1989
, “
Phenomenon and Modelling of Flow-Induced Vibrations of Bluff Bodies
,”
Prog. Aerosp. Sci.
,
26
(
2
), pp.
169
224
.
25.
Mannini
,
C.
,
Marra
,
A. M.
, and
Bartoli
,
G.
,
2014
, “
VIV-Galloping Instability of Rectangular Cylinders: Review and New Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
132
, pp.
109
124
.
26.
Mannini
,
C.
,
Marra
,
A. M.
,
Massai
,
T.
, and
Bartoli
,
G.
,
2016
, “
Interference of Vortex-Induced Vibration and Transverse Galloping for a Rectangular Cylinder
,”
J. Fluids Struct.
,
66
, pp.
403
423
.
27.
Assi
,
G. R. S.
,
Bearman
,
P. W.
, and
Kitney
,
N.
,
2009
, “
Low Drag Solutions for Suppressing Vortex-Induced Vibration of Circular Cylinder
,”
J. Fluids Struct.
,
25
(
4
), pp.
666
675
.
28.
Assi
,
G. R. S.
, and
Bearman
,
P. W.
,
2015
, “
Transverse Galloping of Circular Cylinders Fitted With Solid and Slotted Splitter Plates
,”
J. Fluids Struct.
,
54
, pp.
263
280
.
29.
Stappenbelt
,
B.
,
2010
, “
Splitter-Plate Wake Stabilisation and Low Aspect Ratio Cylinder Flow-Induced Vibration Mitigation
,”
Int. J. Offshore Polar
,
20
(
3
), pp.
1
6
.
30.
Liang
,
S. P.
,
Wang
,
J. S.
, and
Hu
,
Z. M.
,
2018
, “
VIV and Galloping Response of a Circular Cylinder With Rigid Detached Splitter Plates
,”
Ocean Eng.
,
162
, pp.
176
186
.
31.
Gao
,
D. L.
,
Chen
,
G. B.
,
Huang
,
Y. W.
,
Chen
,
W. L.
, and
Li
,
H.
,
2020
, “
Flow Characteristics of a Fixed Circular Cylinder With an Upstream Splitter Plate: On the Plate-Length Sensitivity
,”
Exp. Therm. Fluids Sci.
,
117
, p.
110135
.
32.
Chutkey
,
K.
,
Suriyanarayanan
,
P.
, and
Venkatakrishnan
,
L.
,
2018
, “
Near Wake Field of Circular Cylinder With a Forward Splitter Plate
,”
J. Wind Eng. Ind. Aerod.
,
173
, pp.
28
38
.
33.
Qiu
,
Y.
,
Sun
,
Y.
,
Wu
,
Y.
, and
Tamura
,
Y.
,
2014
, “
Effects of Splitter Plates and Reynolds Number on the Aerodynamic Loads Acting on a Circular Cylinder
,”
J. Wind Eng. Ind. Aerod.
,
127
, pp.
40
50
.
34.
Vikestad
,
K.
,
Vandiver
,
J. K.
, and
Larsen
,
C. M.
,
2000
, “
Added Mass and Oscillation Frequency for a Circular Cylinder Subjected to Vortex-Induced Vibrations and External Disturbance
,”
J. Fluids Struct.
,
14
(
7
), pp.
1071
1088
.
35.
Jiang
,
H. Y.
,
Cheng
,
L.
,
Draper
,
S.
,
An
,
H. W.
, and
Tong
,
F. F.
,
2016
, “
Three-Dimensional Direct Numerical Simulation of Wake Transitions of a Circular Cylinder
,”
J. Fluids Mech.
,
801
, pp.
353
391
.
36.
Zhu
,
H. J.
,
Tang
,
T.
,
Zhao
,
H. L.
, and
Gao
,
Y.
,
2019
, “
Control of Vortex-Induced Vibration of a Circular Cylinder Using a Pair of Air Jets at Low Reynolds Number
,”
Phys. Fluids
,
31
(
4
), p.
043603
.
37.
Zhu
,
H. J.
,
Yao
,
J.
,
Ma
,
Y.
,
Zhao
,
H. N.
, and
Tang
,
Y. B.
,
2015
, “
Simultaneous CFD Evaluation of VIV Suppression Using Smaller Control Cylinders
,”
J. Fluids Struct.
,
57
, pp.
66
80
.
38.
Zhu
,
H. J.
,
Zhao
,
H. N.
,
Yao
,
J.
, and
Tang
,
Y. B.
,
2016
, “
Numerical Study on Vortex-Induced Vibration Responses of a Circular Cylinder Attached by a Free-to-Rotate Dartlike Overlay
,”
Ocean Eng.
,
112
, pp.
195
210
.
39.
Zhu
,
H. J.
, and
Gao
,
Y.
,
2018
, “
Hydrokinetic Energy Harvesting From Flow-Induced Vibration of a Circular Cylinder With Two Symmetrical Fin-Shaped Strips
,”
Energy.
,
165
, pp.
1259
1281
.
40.
Zhu
,
H. J.
,
Zhao
,
Y.
, and
Zhou
,
T. M.
,
2018
, “
Numerical Investigation of the Vortex-Induced Vibration of an Elliptic Cylinder Free-to-Rotate About Its Center
,”
J. Fluids Struct.
,
83
, pp.
133
155
.
41.
Bao
,
Y.
,
Zhou
,
D.
, and
Tu
,
J. H.
,
2011
, “
Flow Interference Between a Stationary Cylinder and an Elastically Mounted Cylinder Arranged in Proximity
,”
J. Fluids Struct.
,
27
(
8
), pp.
1425
1446
.
42.
Wu
,
J.
,
Shu
,
C.
, and
Zhao
,
N.
,
2014
, “
Numerical Investigation of Vortex-Induced Vibration of a Circular Cylinder With a Hinged Flat Plate
,”
Phys. Fluids
,
26
(
6
), p.
063601
.
43.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2009
, “
Vortex-Induced Vibrations of Two Cylinders in Tandem Arrangement in the Proximity-Wake Interference Region
,”
J. Fluids Mech.
,
621
, pp.
321
364
.
44.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluids Mech.
,
36
(
1
), pp.
413
455
.
45.
Jauvtis
,
N.
, and
Williamson
,
C. H. K.
,
2003
, “
Vortex-Induced Vibration of a Cylinder With Two Degrees of Freedom
,”
J. Fluids Struct.
,
17
(
7
), pp.
1035
1042
.
46.
Sudhakar
,
Y.
, and
Vengadesan
,
S.
,
2012
, “
Vortex Shedding Characteristics of a Circular Cylinder With an Oscillating Wake Splitter Plate
,”
Comput. Fluids
,
53
, pp.
40
52
.
47.
Lu
,
L.
,
Guo
,
X. L.
,
Tang
,
G. Q.
,
Liu
,
M. M.
,
Chen
,
C. Q.
, and
Xie
,
Z. H.
,
2016
, “
Numerical Investigation of Flow-Induced Rotary Oscillation of Circular Cylinder With Rigid Splitter Plate
,”
Phys. Fluids
,
28
(
9
), p.
093604
.
48.
Hwang
,
J. Y.
,
Yang
,
K. S.
, and
Sun
,
S. H.
,
2003
, “
Reduction of Flow-Induced Forces on a Circular Cylinder Using a Detached Splitter Plate
,”
Phys. Fluids
,
15
(
8
), pp.
2433
2436
.
49.
Deep
,
D.
,
Sahasranaman
,
A.
, and
Senthilkumar
,
S.
,
2022
, “
POD Analysis of the Wake Behind a Circular Cylinder With Splitter Plate
,”
Eur. J. Mech. B/Fluids
,
93
, pp.
1
12
.
50.
Achenbach
,
E.
,
1971
, “
Influence of Surface Roughness on the Cross-Flow Around a Circular Cylinder
,”
J. Fluids Mech.
,
46
(
2
), pp.
321
335
.
51.
Akilli
,
H.
,
Karakus
,
C.
,
Akar
,
A.
,
Sahin
,
B.
, and
Tumen
,
N. F.
,
2008
, “
Control of Vortex Shedding of Circular Cylinder in Shallow Water Flow Using an Attached Splitter Plate
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041401
.
52.
Zhao
,
M.
,
Cheng
,
L.
, and
Zhou
,
T. M.
,
2013
, “
Numerical Simulation of Vortex-Induced Vibration of a Square Cylinder at a Low Reynolds Number
,”
Phys. Fluids
,
25
(
2
), p.
023603
.
53.
Jaiman
,
R. K.
,
Guan
,
M. Z.
, and
Miyanawala
,
T. P.
,
2016
, “
Partitioned Iterative and Dynamic Subgrid-Scale Methods for Freely Vibrating Square-Section Structures at Subcritical Reynolds Number
,”
Comput. Fluids
,
133
, pp.
68
89
.
54.
Ozono
,
S.
,
1999
, “
Flow Control of Vortex Shedding by a Short Splitter Plate Asymmetrically Arranged Downstream of a Cylinder
,”
Phys. Fluids
,
11
(
10
), pp.
2928
2934
.
55.
Mittal
,
S.
,
2003
, “
Effect of ‘Slip’ Splitter Plate on Vortex Shedding From a Cylinder
,”
Phys. Fluids
,
15
(
3
), pp.
817
820
.
56.
Xu
,
W. H.
,
Ji
,
C. N.
,
Sun
,
H.
,
Ding
,
W. J.
, and
Bernitsas
,
M. M.
,
2019
, “
Flow-Induced Vibration of Two Elastically Mounted Tandem Cylinders in Cross-Flow at Subcritical Reynolds Numbers
,”
Ocean Eng.
,
173
, pp.
375
387
.
57.
Song
,
L. J.
,
Fu
,
S. X.
,
Cao
,
J.
,
Ma
,
L. X.
, and
Wu
,
J. Q.
,
2016
, “
An Investigation Into the Hydrodynamics of a Flexible Riser Undergoing Vortex-Induced Vibration
,”
J. Fluids Struct.
,
63
, pp.
325
350
.
You do not currently have access to this content.