Abstract

This work presents experimental results on vortex-induced vibration (VIV) of a horizontal cylinder with 2.69 m in length, 21 mm in diameter, and a mass ratio equal to 3.9. The experiments were carried out in a towing tank, where the flexible cylinder was towed under constant current profiles. Twenty reduced velocities were tested in a range of 1.75 < Vr < 15.79, corresponding to Reynolds numbers from 1000 to 10,000. The displacements were measured directly through a submerged optical system that simultaneously acquired the in-line and cross-flow movements of 18 reflective targets along the length. The extensive monitored section of the model enabled the application of a modal decomposition technique, which is a methodology that is still relatively unexplored through direct measurements. A comprehensive analysis was applied and the VIV responses related to amplitudes, frequencies, phase angles, and trajectories are shown and discussed in depth. The overall dynamics exhibits a multimodal response behavior, and the modal decomposition procedure has conclusively confirmed that the total amplitude comprises several modes vibrating at the dominant mode frequency. Root mean square values of response amplitude were up to 0.77D and 0.23D in the cross-flow and in-line directions, respectively. The cross-flow synchronization had a significant impact on the in-line excitation modes, and the trajectories showed coherence between motions.

References

1.
Bearman
,
P.
,
2011
, “
Circular Cylinder Wakes and Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
27
(
5
), pp.
648
658
, IUTAM Symposium on Bluff Body Wakes and Vortex-Induced Vibrations (BBVIV-6).
2.
Williamson
,
C.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
413
455
.
3.
Sarpkaya
,
T.
,
2004
, “
A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
4
), pp.
389
447
.
4.
Jauvtis
,
N.
, and
Williamson
,
C.
,
2003
, “
Vortex-Induced Vibration of a Cylinder With Two Degrees of Freedom
,”
J. Fluids Struct.
,
17
(
7
), pp.
1035
1042
.
5.
Jauvtis
,
N.
, and
Williamson
,
C.
,
2004
, “
The Effect of Two Degrees of Freedom on Vortex-Induced Vibration at Low Mass and Damping
,”
J. Fluid Mech.
,
509
(
1
), pp.
23
62
.
6.
SongWang
,
J.
,
Fan
,
D.
, and
Lin
,
K.
,
2020
, “
A Review on Flow-Induced Vibration of Offshore Circular Cylinders
,”
J. Hydrodyn.
,
32
(
3
), pp.
415
440
.
7.
Chaplin
,
J.
,
Bearman
,
P.
,
Huarte
,
F. H.
, and
Pattenden
,
R.
,
2005
, “
Laboratory Measurements of Vortex-Induced Vibrations of a Vertical Tension Riser in a Stepped Current
,”
J. Fluids Struct.
,
21
(
1
), pp.
3
24
, Fluid-Structure and Flow-Acoustic Interactions Involving Bluff Bodies.
8.
Vandiver
,
J. K.
,
Marcollo
,
H.
,
Swithenbank
,
S.
, and
Jhingran
,
V.
,
2005
, “
High Mode Number Vortex-Induced Vibration Field Experiments
,”
Offshore Technology Conference
,
Houston, TX
,
May 2–5
.
9.
Swithenbank
,
S. B.
,
Vandiver
,
J. K.
,
Larsen
,
C. M.
, and
Lie
,
H.
,
2009
, “
Reynolds Number Dependence of Flexible Cylinder VIV Response Data
,”
ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering
,
Estoril, Portugal
,
July 15–20
, pp.
503
511
.
10.
Huera-Huarte
,
F. J.
,
2006
, “
Multi-Mode Vortex-Induced Vibrations of a Flexible Circular Cylinder
,” Ph.D. Thesis,
Imperial College London
,
London, UK
, pp.
1
217
.
11.
Huera-Huarte
,
F.
, and
Bearman
,
P.
,
2009
, “
Wake Structures and Vortex-Induced Vibrations of a Long Flexible Cylinder-Part 1: Dynamic Response
,”
J. Fluids Struct.
,
25
(
6
), pp.
969
990
.
12.
Huera-Huarte
,
F.
, and
Bearman
,
P.
,
2009
, “
Wake Structures and Vortex-Induced Vibrations of a Long Flexible Cylinder-Part 2: Drag Coefficients and Vortex Modes
,”
J. Fluids Struct.
,
25
(
6
), pp.
991
1006
.
13.
Song
,
J.
,
Lu
,
L.
,
Teng
,
B.
,
Park
,
H.
,
Tang
,
G.
, and
Wu
,
H.
,
2011
, “
Laboratory Tests of Vortex-Induced Vibrations of a Long Flexible Riser Pipe Subjected to Uniform Flow
,”
Ocean Eng.
,
38
(
11
), pp.
1308
1322
.
14.
Sanaati
,
B.
, and
Kato
,
N.
,
2013
, “
Vortex-Induced Vibration (VIV) Dynamics of a Tensioned Flexible Cylinder Subjected to Uniform Cross-Flow
,”
J. Mar. Sci. Technol.
,
18
(
2
), pp.
247
261
.
15.
Song
,
L.
,
Fu
,
S.
,
Cao
,
J.
,
Ma
,
L.
, and
Wu
,
J.
,
2016
, “
An Investigation Into the Hydrodynamics of a Flexible Riser Undergoing Vortex-Induced Vibration
,”
J. Fluids Struct.
,
63
(
1
), pp.
325
350
.
16.
Ren
,
H.
,
Zhang
,
M.
,
Wang
,
Y.
,
Xu
,
Y.
,
Fu
,
S.
,
Fu
,
X.
, and
Zhao
,
B.
,
2020
, “
Drag and Added Mass Coefficients of a Flexible Pipe Undergoing Vortex-Induced Vibration in an Oscillatory Flow
,”
Ocean Eng.
,
210
(
1
), p.
107541
.
17.
Fan
,
D.
,
Wang
,
Z.
,
Triantafyllou
,
M. S.
, and
Karniadakis
,
G. E.
,
2019
, “
Mapping the Properties of the Vortex-Induced Vibrations of Flexible Cylinders in Uniform Oncoming Flow
,”
J. Fluid Mech.
,
881
(
1
), pp.
815
858
.
18.
Liu
,
C.
,
Fu
,
S.
,
Zhang
,
M.
,
Ren
,
H.
, and
Xu
,
Y.
,
2020
, “
Hydrodynamics of a Flexible Cylinder Under Modulated Vortexinduced Vibrations
,”
J. Fluids Struct.
,
94
(
1
), p.
102913
.
19.
Wu
,
J.
,
Lie
,
H.
,
Larsen
,
C. M.
,
Liapis
,
S.
, and
Baarholm
,
R.
,
2016
, “
Vortex-Induced Vibration of a Flexible Cylinder: Interaction of the In-Line and Cross-Flow Responses
,”
J. Fluids Struct.
,
63
(
1
), pp.
238
258
.
20.
Lie
,
H.
, and
Kaasen
,
K.
,
2006
, “
Modal Analysis of Measurements From a Large-Scale VIV Model Test of a Riser in Linearly Sheared Flow
,”
J. Fluids Struct.
,
22
(
4
), pp.
557
575
.
21.
Shang
,
J. K.
,
Stone
,
H. A.
, and
Smits
,
A. J.
,
2014
, “
Vortex and Structural Dynamics of a Flexible Cylinder in Cross-Flow
,”
Phys. Fluids
,
26
(
5
), p.
053605
.
22.
Ma
,
Y.
,
Xu
,
W.
,
Ai
,
H.
,
Wang
,
Y.
, and
Jia
,
K.
,
2021
, “
The Effect of Time-Varying Axial Tension on VIV Suppression for a Flexible Cylinder Attached With Helical Strakes
,”
Ocean Eng.
,
241
(
1
), p.
109981
.
23.
Franzini
,
G. R.
,
Pesce
,
C. P.
,
Salles
,
R.
,
Goncçalves
,
R. T.
,
Fujarra
,
A. L. C.
, and
Mendes
,
P.
,
2015
, “
Experimental Analysis of a Vertical and Flexible Cylinder in Water: Response to Top Motion Excitation and Parametric Resonance
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031010
.
24.
Franzini
,
G.
,
Pesce
,
C.
,
Goncçalves
,
R.
,
Fujarra
,
A.
, and
Mendes
,
P.
,
2018
, “
An Experimental Investigation on Concomitant Vortex-Induced Vibration and Axial Top-Motion Excitation With a Long Flexible Cylinder in Vertical Configuration
,”
Ocean Eng.
,
156
(
1
), pp.
596
612
.
25.
Franzini
,
G.
, and
Mazzilli
,
C.
,
2016
, “
Non-Linear Reduced-Order Model for Parametric Excitation Analysis of an Immersed Vertical Slender Rod
,”
Int. J. Non-Linear Mech.
,
80
(
1
), pp.
29
39
.
26.
Vernizzi
,
G. J.
,
Franzini
,
G. R.
, and
Lenci
,
S.
,
2019
, “
Reduced-Order Models for the Analysis of a Vertical Rod Under Parametric Excitation
,”
Int. J. Mech. Sci.
,
163
(
1
), p.
105122
.
27.
Seyed-Aghazadeh
,
B.
, and
Modarres-Sadeghi
,
Y.
,
2016
, “
Reconstructing the Vortex-Induced-Vibration Response of Flexible Cylinders Using Limited Localized Measurement Points
,”
J. Fluids Struct.
,
65
(
1
), pp.
433
446
.
28.
Gedikli
,
E. D.
, and
Dahl
,
J. M.
,
2017
, “
Mode Excitation Hysteresis of a Flexible Cylinder Undergoing Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
69
(
1
), pp.
308
322
.
29.
Gedikli
,
E. D.
,
Chelidze
,
D.
, and
Dahl
,
J. M.
,
2018
, “
Observed Mode Shape Effects on the Vortex-Induced Vibration of Bending Dominated Flexible Cylinders Simply Supported at Both Ends
,”
J. Fluids Struct.
,
81
(
1
), pp.
399
417
.
30.
Rateiro Pereira
,
F.
,
Gonçalves
,
R. T.
,
Pesce
,
C. P.
,
Fujarra
,
A. L. C.
,
Franzini
,
G. R.
, and
Mendes
,
P.
,
2013
, “
A Model Scale Experimental Investigation on Vortex-Self Induced Vibrations (VSIV) of Catenary Risers
,”
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
,
June 9–14
.
31.
Franzini
,
G. R.
,
Pesce
,
C. P.
,
Goncçalves
,
R. T.
,
Fujarra
,
A. L. C.
, and
Mendes
,
P.
,
2016
, “
Experimental Investigations on Vortex-Induced Vibrations With a Long Flexible Cylinder. Part I: Modal-Amplitude Analysis With a Vertical Configuration
,”
FIV2016 11th International Conference on Flow-Induced Vibration
,
The Hague, The Netherlands
,
July 4–6
.
32.
Franzini
,
G. R.
,
Pesce
,
C. P.
,
Goncçalves
,
R. T.
,
Fujarra
,
A. L. C.
, and
Mendes
,
P.
,
2016
, “
Experimental Investigations on Vortex-Induced Vibrations With a Long Flexible Cylinder. Part II: Effect of Axial Motion Excitation in a Vertical Configuration
,”
FIV2016 11th International Conference on Flow-Induced Vibration
,
The Hague, The Netherlands
,
July 4–6
.
33.
Rateiro Pereira
,
F.
,
Fujarra
,
A. L. C.
,
Pesce
,
C. P.
,
Goncçalves
,
R. T.
,
Franzini
,
G. R.
, and
Mendes
,
P.
,
2016
, “
Experimental Investigations on Vortex-Induced Vibrations With a Long Flexible Cylinder. Part III: Modal-Amplitude Analysis With a Catenary Configuration
,”
FIV2016 11th International Conference on Flow-Induced Vibration
,
The Hague, The Netherlands
,
July 4–6
.
34.
Rateiro
,
F.
,
Goncçalves
,
R. T.
,
Fujarra
,
A. L. C.
, and
Mendes
,
P.
,
2012
, “
Risers Model Tests: Scaling Methodology and Dynamic Similarity
,”
ISOPE2012 The 22nd International Offshore and Polar Engineering Conference
,
Rhodes, Greece
,
June 17–22
.
35.
Blevins
,
R. D.
,
2001
,
Formulas for Natural Frequency and Mode Shape
, 5th ed.,
Krieger Publishing Company
,
Malabar, FL
, pp.
1
492
.
36.
Liu
,
C.
,
Fu
,
S.
,
Zhang
,
M.
,
Ren
,
H.
, and
Xu
,
Y.
,
2020
, “
Hydrodynamics of a Flexible Cylinder Under Modulated Vortexinduced Vibrations
,”
J. Fluids Struct.
,
94
(
1
), p.
102913
.
37.
Pikovsky
,
A.
,
Rosenblum
,
M.
, and
Kurths
,
J
,
2003
,
Synchronization: A Universal Concept in Nonlinear Sciences
, Vol.
12
,
Cambridge University Press
,
Cambridge, UK
, pp.
1
432
.
You do not currently have access to this content.