Abstract

When estimating significant wave height and wave power, it is regularly assumed 4 for the spectral estimate factor. It means considering a narrowband wave spectrum. That approach is accurate enough when the spectral broadness parameter is near zero. Since the Peru Basin is an open ocean: swells and local wind waves can overlap; therefore, its wave spectrum should be considered broadband. This work aims to demonstrate that the wave spectrum in the Peru Basin has waves in a broad band of frequencies and also discuss how this characteristic affects estimating the significant wave height and wave power. The methodology comprises numerical methods, inferential statistics, and spectral analysis applied to ocean data. The paper's conclusions declare the Peru Basin wave spectrum as broadband. The estimated significant wave height for broadband wave spectrum is 7% lower than if the wave spectrum was considered narrowband. We propose 3.7 as the spectral estimate factor for calculating the significant wave height in the Peru Basin instead of the commonly used 4. The significant wave height error when assuming a narrowband wave spectrum slightly affects the spectral parametric wave power calculation, causing a maximum overestimation of 5%. Nevertheless, accurately estimating significant wave height is critical for diverse marine technologies.

References

1.
Li
,
N.
,
García-Medina
,
G.
,
Cheung
,
K. F.
, and
Yang
,
Z.
,
2021
, “
Wave Energy Resources Assessment for the Multi-modal Sea State of Hawaii
,”
Renewable Energy
,
174
, pp.
1036
1055
.
2.
Guillou
,
N.
,
2020
, “
Estimating Wave Energy Flux From Significant Wave Height and Peak Period
,”
Renewable Energy
,
155
, pp.
1383
1393
.
3.
Iglesias
,
G.
,
López
,
M.
,
Carballo
,
R.
,
Castro
,
A.
,
Fraguela
,
J. A.
, and
Frigaard
,
P.
,
2009
, “
Wave Energy Potential in Galicia (NW Spain)
,”
Renewable Energy
,
34
(
11
), pp.
2323
2333
.
4.
Sverdrup
,
H. U.
, and
Munk
,
W. H.
,
1946
, “
Empirical and Theoretical Relations Between Wind, Sea, and Swell
,”
Eos Trans. Am. Geophys. Union
,
27
(
6
), pp.
823
827
.
5.
Portilla-Yandún
,
J.
,
Barbariol
,
F.
,
Benetazzo
,
A.
, and
Cavaleri
,
L.
,
2019
, “
On the Statistical Analysis of Ocean Wave Directional Spectra
,”
Ocean Eng.
,
189
, p.
106361
.
6.
Longuet-Higgings
,
M
.,
1952
, “
On the Statistical Distribution of the Heights of Sea Waves
”,
J. Mar. Res.
,
XI
, pp.
245
266
.
7.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
(
3
), pp.
293
297
.
8.
Muraleedharan
,
G.
,
Rao
,
A. D.
,
Kurup
,
P. G.
,
Nair
,
N. U.
, and
Sinha
,
M.
,
2007
, “
Modified Weibull Distribution for Maximum and Significant Wave Height Simulation and Prediction
,”
Coast. Eng.
,
54
(
8
), pp.
630
638
.
9.
Vandever
,
J. P.
,
Siegel
,
E. M.
,
Brubaker
,
J. M.
, and
Friedrichs
,
C. T.
,
2008
, “
Influence of Spectral Width on Wave Height Parameter Estimates in Coastal Environments
,”
J. Waterw. Port Coast. Ocean Eng.
,
134
, pp.
187
194
.
10.
Goda
,
Y.
, and
Kudaka
,
M.
,
2007
, “
On the Role of Spectral Width and Shape Parameters in Control of Individual Wave Height Distribution
,”
Coast. Eng.
,
49
(
3
), pp.
311
335
.
11.
Jawa
,
S.
, and
Munehiko
,
M.
,
2023
, “
Validation of Short-Term Prediction of Added Resistance in Head Seas Considering Wave Steepness Nonlinearity With Probability Density Function Method
,”
Ocean Eng.
,
278
, p.
114353
.
12.
Chen
,
J.
,
Milne
,
I.
,
Taylor
,
P. H.
,
Gunawan
,
D.
, and
Zhao
,
W.
,
2023
, “
Forward Prediction of Surface Wave Elevations and Motions of Off-Shore Floating Structures Using a Data-Driven Model
,”
Ocean Eng.
,
281
, p.
114680
.
13.
Lu
,
W. S.
,
Tseng
,
C. H.
,
Hsiao
,
S. C.
,
Chiang
,
W. S.
, and
Hu
,
K. C.
,
2022
, “
Future Projection for Wave Climate Around Taiwan Using Weather-Type Statistical Downscaling Method
,”
J. Mar. Sci. Eng.
,
10
(
12
), p.
1823
.
14.
Han
,
M.
, and
Wang
,
C. M.
,
2022
, “
Efficiency and Wave Run-Up of Porous Breakwater With Sloping Deck
,”
J. Mar. Sci. Eng.
,
10
(
12
), p.
1896
.
15.
De La Torre
,
D.
, and
Ortega
,
A.
,
2022
, “
Applicability of the Standard Sea Spectrums and New Calibration Coefficients for the Wave Energy Period Calculation of the Peru Sea Basin
,”
Proceedings of the 2022 IEEE Engineering International Research Conference
,
Lima, Peru
,
Oct. 26–28
,
pp. 1−4
.
16.
NOAA
,
2023
, “National Data Buoy Center,” https://www.ndbc.noaa.gov/. Accessed September 12, 2020
17.
De La Torre
,
D.
, and
Ortega
,
A.
,
2022
, “
Wave Energy Distribution and Directional Assessment in the Peru Basin
,”
Proceedings of the 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing
,
Lima, Peru
,
Aug. 11–13
, pp.
1
4
.
18.
De La Torre
,
D.
, and
Ortega
,
A.
,
2022
, “
Variability and Wave Power for Open Ocean Wave Conditions of the Peru Basin
,”
Proceedings of the 2022 IEEE Engineering International Research Conference
,
Lima, Peru
,
Oct. 26–28
, pp.
1
4
.
19.
NDBC
,
2003
, “
Nondirectional and Directional Wave Data Analysis Procedures
,” Technical Document 03-01, National Data Buoy Center: Stennis Space Center, https://www.ndbc.noaa.gov/wavemeas.pdf, Accessed November 27, 2020.
20.
Cartwright
,
D. E.
, and
Longuet-Higgings
,
M. S.
,
1956
, “
The Statistical Distribution of the Maxima of a Random Function
,”
Proc. R. Soc. A
,
237
(
1209
), pp.
212
232
.
21.
OCEANENERGY
,
2023
, “Design – Build – Test: The Ocean Energy Philosophy,” https://oceanenergy.ie/oe12/. Accessed December 28, 2023.
22.
TÜV SÜD
,
2007
, “
Wave Dragon Pre-Commercial Wave Energy Device, Environmental Statement Volume 1: Non-Technical Summary
,” Report No. 26906-2, TÜV SÜD: München, Germany. https://tethys.pnnl.gov/sites/default/files/publications/WDNTS.pdf. Accessed December 28, 2023.
23.
OPT
,
2023
, “PB3 PowerBuoy,” https://oceanpowertechnologies.com/platform/opt-pb3-powerbuoy/. Accessed December 28, 2023.
24.
Cummins
,
W. E.
, and
Dalzell
,
J. F.
,
1989
, “Ocean Waves,”
Principles of Naval Architecture
, 3rd ed.,
E. V.
Lewis
, ed., Vol.
III
,
SNAME
,
New Jersey
, pp.
18
20
.
25.
De La Torre
,
D.
,
Luyo
,
J.
, and
Ortega
,
A.
,
2023
, “
On the Estimation of the Wave Energy Period and a Kernel Proposal for the Peru Basin
,”
J. Mar. Sci. Eng.
,
11
(
6
), p.
1100
.
26.
Folley
,
M.
,
2017
, “The Wave Energy Resource,”
Handbook of Ocean Wave Energy
,
A.
Pecher
, and
J. P.
Kofoed
, eds., Vol.
7
,
Springer
,
Cham, Switzerland
, pp.
57
60
.
27.
Cornett
,
A. M.
,
2008
, “
A Global Wave Energy Resource Assessment
,”
Proceedings of the Eighteenth International Offshore and Polar Engineering Conference
,
Vancouver, Canada
,
July 6–11
, pp.
1
9
.
28.
Amrutha
,
M. M.
, and
Kumar
,
V. S.
,
2020
, “
Changes in Wave Energy in the Shelf Seas of India During the Last 40 Years Based on ERA5 Reanalysis Data
,”
Energies
,
13
(
1
), p.
115
.
29.
Vannucchi
,
V.
, and
Cappietti
,
L.
,
2016
, “
Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots
,”
Sustainability
,
8
(
12
), p.
1300
.
30.
Bingölbali
,
B.
,
Jafali
,
H.
,
Akpınar
,
A.
, and
Bekiroğlu
,
S.
,
2020
, “
Wave Energy Potential and Variability for the South West Coasts of the Black Sea: The WEB-Based Wave Energy Atlas
,”
Renewable Energy
,
154
, pp.
136
150
.
31.
Shi
,
X.
,
Liang
,
B.
,
Du
,
S.
,
Shao
,
Z.
, and
Li
,
S.
,
2022
, “
Wave Energy Assessment in the China East Adjacent Seas Based on a 25-Year Wave-Current Interaction Numerical Simulation
,”
Renewable Energy
,
199
, pp.
1381
1407
.
32.
Holthuijsen
,
L. H.
,
2007
, “Statistics,”
Waves in Ocean and Coastal Waters
,
Cambridge University Press
,
New York
, pp.
68
70
.
You do not currently have access to this content.