Abstract

The development of propulsion devices by using the propulsive mechanisms of aquatic animals such as fish is a challenging task. An attempt has been made to replicate the fishtailed motion that caused thrust in the current investigation. At a low Reynolds number of Re = 1173, the propulsive performance of National Advisory Committee for Aeronautics 0012 flapping foils enduring distinct flapping trajectories (fishtailed and elliptical) is evaluated. A dynamic mesh arbitrary Lagrangian–Eulerian framework is used to understand the desired flapping motion of the foils while solving the flow via incompressible Navier–Stokes equations. Along with the flapping trajectory, the effects of the Strouhal number (St), inter-foils distance (Lx), and phase angle (φ) between the foils on the produced thrust are examined. The results demonstrate that using tandem configuration flapping foil with elliptical and fishtailed flapping can significantly increase the induced thrust and propulsive efficiency.

References

1.
Karbasian
,
H. R.
, and
Esfahani
,
J.
,
2017
, “
Enhancement of Propulsive Performance of Flapping Foil by Fish-Like Motion Pattern
,”
Comput. Fluids
,
156
, pp.
305
316
.
2.
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Yue
,
D. K. P.
,
2000
, “
Hydrodynamics of Fish Like Swimming
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
33
53
.
3.
Wu
,
T. Y.
,
2011
, “
Fish Swimming and Bird/Insect Flight
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
25
58
.
4.
Khalid
,
M. S. U.
,
Wang
,
J.
,
Akhtar
,
I.
,
Dong
,
H.
,
Liu
,
M.
, and
Hemmati
,
A.
,
2021
, “
Why Do Anguilliform Swimmers Perform Undulation With Wavelengths Shorter Than Their Body Lengths?
,”
Phys. Fluids
,
33
(
3
), p.
031911
.
5.
Swain
,
P. K.
,
Dora
,
S. P.
,
Barik
,
A. K.
, and
Resapu
,
R.
,
2023
, “
The Propulsion of Tandem Flapping Foil Following Fishtailed Flapping Trajectory
,”
Phys. Fluids
,
34
(
12
), p.
123609
.
6.
Mativier
,
V.
,
Dumas
,
G.
, and
Poirel
,
D.
,
2009
, “
Aeroelastic Dynamics of a NACA0012 Airfoil at Transitional Reynolds Numbers
,”
AIAA J.
,
4034
, pp.
1
12
.
7.
Lu
,
K.
,
Xie
,
Y.
,
Zhang
,
D.
, and
Lan
,
J.
,
2013
, “
Numerical Investigations Into the Asymmetric Effects on the Aerodynamic Response of a Pitching Airfoil
,”
J. Fluids Struct.
,
39
, pp.
76
86
.
8.
Koochesfahani
,
M.
,
1987
, “
Vortical Patterns in the Wake of an Oscillating Airfoil
,”
AIAA J.
,
1
, pp.
1987
1111
.
9.
Bohl
,
D. G.
, and
Koochesfahani
,
M. M.
,
2009
, “
MTV Measurements of the Vortical Field in the Wake of an Airfoil Oscillating at High Reduced Frequency
,”
J. Fluid Mech.
,
620
, pp.
63
88
.
10.
Sarkar
,
S.
,
2010
, “
Comparing Pure-Pitch and Pure-Plunge Kinematics for a Symmetric Airfoil
,”
AIAA J.
,
48
(
12
), pp.
2962
2969
.
11.
Lai
,
J. C. S.
, and
Platzer
,
M. F.
,
1999
, “
Jet Characteristics of a Plunging Airfoil
,”
AIAA J.
,
37
(
12
), pp.
1529
1537
.
12.
Cleaver
,
D. J.
,
Wang
,
Z.
,
Gursul
,
I.
, and
Visbal
,
M. R.
,
2011
, “
Lift Enhancement By Means of Small-Amplitude Airfoil Oscillations at Low Reynolds Numbers
,”
AIAA J.
,
49
(
9
), pp.
2018
2033
.
13.
Anderson
,
J. M.
,
Streitlien
,
K.
,
Barrett
,
D. S.
, and
Triantafyllou
,
M. S.
,
1998
, “
Oscillating Foils of High Propulsive Efficiency
,”
J. Fluid Mech.
,
360
, pp.
41
72
.
14.
Pedro
,
G.
,
Suleman
,
A.
, and
Djilali
,
N.
,
2003
, “
A Numerical Study of the Propulsive Efficiency of a Flapping Hydrofoil
,”
Int. J. Numer. Methods Fluids
,
42
(
5
), pp.
493
526
.
15.
Kurtulus
,
D. F.
,
David
,
L.
,
Farcy
,
A.
, and
Alemdaroglu
,
N.
,
2007
, “
Aerodynamic Characteristics of Flapping Motion in Hover
,”
Exp. Fluids
,
44
(
1
), pp.
23
36
.
16.
Khalid
,
M. S. U.
,
Akhtar
,
I.
, and
Durrani
,
N. I.
,
2015
, “
Analysis of Strouhal Number Based Equivalence of Pitching and Plunging Airfoils and Wake Deflection
,”
Proc. Inst. Mech. Eng. G
,
229
, pp.
1423
1434
.
17.
Deng
,
J.
,
Sun
,
L.
,
Teng
,
L.
,
Pan
,
D.
, and
Shao
,
X.
,
2016
, “
The Correlation Between Wake Transition and Propulsive Efficiency of a Flapping Foil: A Numerical Study
,”
Phys. Fluids
,
28
(
9
), p.
094101
.
18.
Mandujano
,
F.
, and
Malaga
,
C.
,
2018
, “
On the Forced Flow Around a Rigid Flapping Foil
,”
Phys. Fluids
,
30
(
6
), p.
061901
.
19.
Bose
,
C.
, and
Sarkar
,
S.
,
2018
, “
Investigating Chaotic Wake Dynamics Past a Flapping Airfoil and the Role of Vortex Interactions Behind the Chaotic Transition
,”
Phys. Fluids
,
30
(
4
), p.
047101
.
20.
Young
,
J.
, and
Lai
,
J. C. S.
,
2007
, “
On the Aerodynamic Forces of a Plunging Airfoil
,”
J. Mech. Sci. Technol.
,
21
(
9
), pp.
1388
1397
.
21.
Lighthill
,
M. J.
,
1970
, “
Aquatic Animal Propulsion of High Hydro Mechanical Efficiency
,”
J. Fluid Mech.
,
44
(
2
), p.
265
.
22.
Triantafyllou
,
M. S.
,
Hover
,
F. S.
,
Techet
,
A. H.
, and
Yue
,
D. K. P.
,
2005
, “
Review of Hydrodynamic Scaling Laws in Aquatic Locomotion and Fish Like Swimming
,”
ASME Appl. Mech. Rev.
,
58
(
4
), pp.
226
237
.
23.
Weihs
,
D.
,
1973
, “
Hydromechanics of Fish Schooling
,”
Nature
,
241
(
5387
), pp.
290
291
.
24.
Partridge
,
B. L.
, and
Pitcher
,
T. J.
,
1979
, “
Evidence Against a Hydrodynamic Function for Fish Schools
,”
Nature
,
279
(
5712
), pp.
418
419
.
25.
Deng
,
J.
,
Shao
,
X.-M.
, and
Yu
,
Z.-S.
,
2007
, “
Hydrodynamic Studies on Two Traveling Wavy Foils in Tandem Arrangement
,”
Phys. Fluids
,
19
(
11
), p.
113104
.
26.
Swain
,
P. K.
,
Challa
,
B. N. S. A.
,
Ganti
,
N. A.
,
Dora
,
S. P.
, and
Barik
,
A. K.
,
2023
, “
Effect of Flapping Trajectory and Inter Foil Distance on Propulsive Performance of a Tandem Flapping Foil
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
1
), p.
010902
.
27.
Gopalkrishnan
,
R.
,
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Barrett
,
D.
,
1994
, “
Active Vorticity Control in a Shear Flow Using a Flapping Foil
,”
J. Fluid Mech.
,
274
, pp.
1
12
.
28.
Liao
,
J. C.
,
Beal
,
D. N.
,
Lauder
,
G. V.
, and
Triantafyllou
,
M. S.
,
2003
, “
Fish Exploiting Vortices Decrease Muscle Activity
,”
Science
,
302
(
5650
), pp.
1566
1569
.
29.
Beal
,
D. N.
,
Hover
,
F. S.
,
Triantafyllou
,
M. S.
,
Liao
,
J. C.
, and
Lauder
,
G. V.
,
2006
, “
Passive Propulsion Invortex Wakes
,”
J. Fluid Mech.
,
549
(
1
), p.
385
.
30.
Shao
,
X.
,
Pan
,
D.
,
Deng
,
J.
, and
Yu
,
Z. S.
,
2010
, “
Hydrodynamic Performance of a Fish Like Undulating Foil in the Wake of a Cylinder
,”
Phys. Fluids
,
22
(
11
), p.
111903
.
31.
Maertens
,
A. P.
,
Gao
,
A.
, and
Triantafyllou
,
M. S.
,
2017
, “
Optimal Undulatory Swimming for a Single Fish-Like Body and for a Pair of Interacting Swimmers
,”
J. Fluid Mech.
,
813
, pp.
301
345
.
32.
Liu
,
Z.
,
Huang
,
Q.
,
Li
,
Z.
,
Li
,
Y.
, and
Feng
,
X.
,
2023
, “
Partial Confinement Effects on the Performance of a Flapping Foil Power Generator
,”
Phys. Fluids
,
35
(
2
), p.
027108
.
33.
Wang
,
L.
, and
Yeung
,
R. W.
,
2016
, “
Investigation of Full and Partial Ground Effects on a Flapping Foil Hovering Above a Finite-Sized Platform
,”
Phys. Fluids
,
28
(
7
), p.
071902
.
34.
Ashraf
,
M. A.
,
Young
,
J.
, and
Lai
,
J. C. S.
,
2011
, “
Reynolds Number, Thickness and Camber Effects on Flapping Airfoil Propulsion
,”
J. Fluids Struct.
,
27
(
2
), pp.
145
160
.
35.
Platzer
,
M.
,
Ashraf
,
M.
,
Young
,
J.
, and
Lai
,
J.
,
2012
, “
Development of a New Oscillating-Wing Wind and Hydropower Generator
,”
47th AIAA Aerospace Sciences Meeting
,
Orlando, FL
,
Jan. 5–8
.
36.
Xiao
,
Q.
,
Liao
,
W.
,
Yang
,
S. C.
, and
Peng
,
Y.
,
2012
, “
How Motion Trajectory Affects Energy Extraction Performance of a Biomimic Energy Generator With an Oscillating Foil
,”
Renew. Energy
,
37
(
1
), pp.
61
75
.
37.
Eloy
,
C.
,
2012
, “
Optimal Strouhal Number for Swimming Animals
,”
J. Fluids Struct.
,
30
, pp.
205
218
.
38.
Triantafyllou
,
M. S.
,
Triantafyllou
,
G. S.
, and
Gopalkrishnan
,
R.
,
1991
, “
Wake Mechanics for Thrust Generation in Oscillating Foils
,”
Phys. Fluids
,
3
(
12
), pp.
2835
2837
.
39.
Xu
,
G. D.
,
Duan
,
W. Y.
, and
Xu
,
W. H.
,
2017
, “
The Propulsion of Two Flapping Foils With Tandem Configuration and Vortex Interactions
,”
Phys. Fluids
,
29
, pp.
1
12
.
40.
von Karman
,
T.
,
1935
, “
General Aerodynamic Theory-Perfect Fluids
,”
Aerodyn. Theory
,
2
, pp.
346
349
.
41.
Zheng
,
Z. C.
, and
Wei
,
Z.
,
2012
, “
Study of Mechanisms and Factors That Influence the Formation of Vortical Wake of a Heaving Airfoil
,”
Phys. Fluids
,
24
, p.
10360
.
42.
Swain
,
P. K.
,
Dora
,
S. P.
,
Suryanarayana
,
M. B.
, and
Barik
,
A. K.
,
2021
, “
Numerical Investigation of Wing–Wing Interaction and Its Effect on the Aerodynamic Force of a Hovering Dragonfly
,”
J. Aerosp. Eng.
,
235
(
12
), pp.
1648
1663
.
You do not currently have access to this content.