Abstract

This paper proposes a shore-based constant tension mooring system, which improves the cable tension distribution by adjusting the length of the cable to maintain the constant tension of the cable between the ship and the mooring pile in order to solve the problem of poor safety and reliability of the traditional mooring system in the mooring process. First, based on the three-dimensional potential flow theory, this paper uses the hydrodynamic software AQWA to numerically simulate the dynamic response of the traditional mooring system under the coupling of wind, wave, and current in different sea states. Subsequently, a shore-based constant tension mooring system using the principle of volume-varying hydraulic control was studied. On the basis of a comprehensive analysis of the working principle of the constant tension hydraulic control mooring system, a mathematical model of the main working circuit is established. The system was numerically simulated by relying on matlab/Simulink simulation software. Finally, by comparing with traditional mooring systems, the results show that the maximum cable tension of the shore-based constant tension mooring system is significantly reduced so that the tension is controlled within a fixed range, and the safety factor of the mooring cable is significantly improved, thus reducing the risk of mooring system failure and improving the ship's survivability.

References

1.
Wen
,
H.
,
Zhu
,
G.
,
Ren
,
B.
,
Chang
,
X.
,
Wu
,
J.
, and
Wang
,
Y.
,
2023
, “
Experimental Study of Multi-Buoy-Assisted Moored Ship Motion at Open Berth
,”
Mar. Struct.
,
92
, p.
103496
.
2.
Campbell
,
L. A.
,
Butler
,
J. A.
, and
Donaldson
,
R. J.
,
2022
, “Mooring Line Failures: Considerations for the Installation of Barrier Protection,”
Australasian Coasts & Ports 2021: Te Oranga Takutai, Adapt and Thrive
,
New Zealand Coastal Society
,
Christchurch, NewZealand
, pp.
230
235
.
3.
Tan
,
H. M.
,
Chen
,
F. M.
, and
Chen
,
J.
,
2018
, “
Model Test on Influence of Berth Length on Lng Vessel Mooring Under Wave-Current-Wind Loads
,”
J. Coast. Res.
,
85
(
10085
), pp.
1061
1065
.
4.
Rosa-Santos
,
P.
,
Taveira-Pinto
,
F.
, and
Veloso-Gomes
,
F.
,
2014
, “
Experimental Evaluation of the Tension Mooring Effect on the Response of Moored Ships
,”
Coast. Eng.
,
85
, pp.
60
71
.
5.
Wu
,
H.
,
Zhang
,
Z.
, and
Liu
,
W.
,
2022
, “
Dynamic Behavior Analysis of an Engineering Ship With Mooring Line Failure
,”
Mar. Technol. Soc. J.
,
56
(
2
), pp.
20
34
.
6.
Zheng
,
Z.
,
Ma
,
X.
,
Yan
,
M.
,
Ma
,
Y.
, and
Dong
,
G.
,
2022
, “
Hydrodynamic Response of Moored Ships to Seismic-Induced Harbor Oscillations
,”
Coast. Eng.
,
176
, p.
104147
.
7.
Lee
,
K. H.
,
Han
,
H. S.
, and
Park
,
S.
,
2015
, “
Failure Analysis of Naval Vessel’s Mooring System and Suggestion of Reducing Mooring Line Tension Under Ocean Wave Excitation
,”
Eng. Fail. Anal.
,
57
, pp.
296
309
.
8.
Torr
,
S.
,
Burlando
,
M.
,
Ruscelli
,
D.
,
Repetto
,
M. P.
, and
Camauli
,
G.
,
2021
, “
Wind Tunnel Experimental Investigation of the Aerodynamic Coefficients Reduction Due to Sheltering Surroundings on a Cruise Ship Moored in Port
,”
J. Wind Eng. Ind. Aerodyn.
,
218
, p.
104731
.
9.
Kery
,
S.
,
2018
, “
Dynamic Modeling of Ship-to-Ship and Ship-to-Pier Mooring Performance
,”
Mar. Technol. Soc. J.
,
52
(
5
), pp.
87
93
.
10.
Li
,
N.
,
Zhang
,
S.
, and
Ren
,
A.
,
2013
, “
Simulation on the Hydraulic System of a Constant Tension Waves Compensation Winch
,”
Adv. Mater. Res.
,
690–693
, pp.
2918
2922
.
11.
Chu
,
Y.
,
Wang
,
K.
, and
Huang
,
S.
,
2022
, “
Design and Modelling of a Constant Tension Mooring System for a 5-MW Semi-Submersible Wind Turbine
,”
Int. J. Offshore Polar Eng.
,
33
(
1
), pp.
10
17
.
12.
Wang
,
C.
,
Wang
,
Y.
,
Yang
,
R.
, and
Lu
,
H.
,
2004
, “
Research on Precision Tension Control System Based on Neural Network
,”
IEEE Trans. Ind. Electron.
,
51
, pp.
381
386
.
13.
Mitsantisuk
,
C.
,
Katsura
,
S.
, and
Ohishi
,
K.
,
2010
, “
Force Control of Human–Robot Interaction Using Twin Direct-Drive Motor System Based on Modal Space Design
,”
IEEE Trans. Ind. Electron.
,
57
, pp.
1383
1392
.
14.
Mitsantisuk
,
C.
,
Ohishi
,
K.
, and
Katsura
,
S.
,
2012
, “
Control of Interaction Force of Twin Direct-Drive Motor System Using Variable Wire Cable Tension With Multisensor Integration
,”
IEEE Trans. Ind. Electron.
,
59
(
1
), pp.
498
510
.
15.
Janabi-Sharifi
,
F.
, and
Liu
,
J.
,
2005
, “
Design of a Self-Adaptive Fuzzy Tension Controller for Tandem Rolling
,”
IEEE Trans. Ind. Electron.
,
52
, pp.
1428
1438
.
16.
Zhong
,
Z.
, and
Wang
,
J.
,
2011
, “
Looper-Tension Almost Disturbance Decoupling Control for Hot Strip Finishing Mill Based on Feedback Linearization
,”
IEEE Trans. Ind. Electron.
,
58
, pp.
3668
3679
.
17.
Mitchell
,
M. R.
, and
Dessureault
,
J. G.
,
1992
, “
A Constant Tension Winch: Design and Test of a Simple Passive System
,”
Ocean Eng.
,
19
(
5
), pp.
489
496
.
18.
Lincoln
,
J. M.
,
Lucas
,
D. L.
,
McKibbin
,
R. W.
, et al
,
2008
, “
Reducing Commercial Fishing Deck Hazards With Engineering Solutions for Winch Design
,”
J Safety Res.
,
39
(
2
), pp.
231
235
.
19.
Wang
,
Y.
, and
Pan
,
H.
,
2013
, “
Study on Constant Tension Winch With PDF Controller Applications in Ocean Engineering
,”
Adv. Mater. Res.
,
830
, pp.
101
107
.
20.
Kim
,
Y.
,
2014
, “
A Study on the Control System Design for Ship Mooring Winch System
,”
J. Mech. Sci. Technol.
,
28
(
3
), pp.
1065
1072
.
21.
Son
,
Y.-D.
,
So
,
G.-B.
, and
Jin
,
G.-G.
,
2017
, “
Rope Tension Control of a Hydraulic Mooring Winch
,”
J. Inst. Control Robot. Syst.
,
23
(
1
), pp.
1
7
.
22.
Chen
,
Q.
,
Li
,
W.
, and
Chen
,
G.
,
2016
, “
FUZZY P+ID Controller for a Constant Tension Winch in a Cable Laying System
,”
IEEE Trans. Ind. Electron.
,
64
(
4
), pp.
2924
2932
.
23.
Zhu
,
P.
,
Zhang
,
Q.
,
Zhao
,
Z.
, and
Yang
,
B.
,
2022
, “
BP Fuzzy Neural Network PID Based Constant Tension Control of Traction Winch
,”
Meas. Control.
,
56
(
3–4
), pp.
857
873
.
24.
Munitic
,
A.
,
Oršulić
,
M.
,
Krcum
,
M.
, and
Dvornik
,
J.
,
2003
, “
System-Dynamic Simulating Modelling of Driving System ‘Anchor Windlass Driven by Asynchronous Motor’ (BSVPAM)
,”
Paper Presented at the Proceedings of the 17th Eucablean Simulation Multiconference: ESS 2003
,
Nottingham, UK
,
June 11
.
25.
Shuo
,
H. U.
,
Songwei
,
S. H.
,
Kai
,
W. A.
,
Tianyu
,
Z. H.
,
Yuefeng,
,
C. H.
, and
Weiqi
,
L. I.
,
2022
, “
Numerical Simulation on an Anti-Typhoon Constant Tension Mooring System of Wave Energy Devices
,”
Harbin Gongcheng Daxue Xuebao/J. Harbin Eng. Univ.
,
43
(
8
), pp.
1096
1101
.
26.
Niu
,
W.
,
Chu
,
J.
, and
Gu
,
W.
,
2010
, “
Robust Tension Control of the Anchor Chain of the Ship Windlass Under Sea Wind
,”
J. Comput.
,
5
(
4
), pp.
631
637
.
27.
Miguel
,
L. P.
,
Juan
,
C. C.
,
Couce
,
L. C.
, and
Luis
,
C. C.
,
2017
, “
A Review of the Drive Options for Offshore Anchor Handling Winches
,”
Brodogradnja
,
68
(
3
), pp.
119
134
.
28.
Lee
,
D.-H.
,
Chakir
,
S.
,
Kim
,
Y.-B.
, and
Tran
,
D.-Q.
,
2020
, “
Control System Design for Vessel Towing System by Activating Rudders of the Towed Vessel
,”
Int. J. Nav. Archit. Ocean Eng.
,
12
, pp.
943
956
.
29.
Kjelland
,
M. B.
, and
Hansen
,
M. R.
,
2015
, “
Offshore Wind Payload Transfer Using Flexible Mobile Crane
,”
Model. Identif. Control
,
36
(
1
), pp.
1
9
.
30.
José
,
F. G.
,
Ângelo
,
P. T.
,
Adriano
,
S.
, and
Nina
,
K.
,
2019
, “
Human Centered Design Methodology: Case Study of a Ship-Mooring Winch
,”
Int. J. Ind. Ergon.
,
74
, p.
102861
.
31.
Van der Molen
,
W.
,
Scott
,
D.
,
Taylor
,
D.
, and
Elliott
,
T.
,
2015
, “
Improvement of Mooring Configurations in Geraldton Harbour
,”
J. Mar. Sci. Eng.
,
4
(
1
), p.
3
.
32.
Villa
,
C. R.
,
Formoso
,
F.
,
López
,
M.
, and
Carral
,
L.
,
2018
, “
A Review of Ship Mooring Systems
,”
Brodogradnja.
,
69
(
1
), pp.
123
149
.
33.
Kuzu
,
A. C.
, and
Arslan
,
Ö
,
2017
, “
Global perspectives in MET:Towards Sustainable, Green and Integrated Maritime Transport, Volume I
,”
18th Annual General Assembly of the International Association of Maritime Universities
,
Varna, Bulgaria
,
Oct. 11–14
.
34.
Yan
,
K.
,
Zhang
,
S.
,
Oh
,
J.
, and
Seo
,
D. W.
,
2022
, “
A Review of Progress and Applications of Automated Vacuum Mooring Systems
,”
J. Mar. Sci. Eng.
,
10
(
8
), p.
1085
.
35.
Krve
,
2016
, “Dynamic-Mooring-System,” http://www.shoretension.nl/wpcontent/uploads/ShoreTension%C2%AE-Dynamic-Mooring-System.pdf, Retrieved May 23, 2016.
36.
Gerrit
,
V. D. B.
,
2011
, “
ShoreTension: Secured to Shore at all Times the Affordable Solution for Safe Mooring in Severe Conditions
,”
Port Technol. Int. (Winter)
,
52
, pp.
43
45
.
37.
De
,
B. J.
,
Molen
,
V. D. W.
,
Lem
,
V. D. J.
,
Ligteringen
,
H.
,
Mühlenstein
,
D.
, and
Howie
,
M.
,
2010
, “
Calculations of the Motions of a Ship Moored with the Moormaster Units
,”
Proc. of the 32nd PIANC International Navigation Congress
,
Liverpool, UK
,
May 10–14
, pp.
622
635
.
38.
Shen
,
Z. X.
,
Yuan
,
Z. J.
,
Li
,
H. B.
, et al
,
2023
, “
Study on the Characteristics of a New Hybrid Mooring System for Dual-Platform Joint Operations
,”
China Ocean Eng.
,
37
(
3
), pp.
506
518
.
39.
Yang
,
R.-Y.
, and
Chiang
,
W. C.
,
2018
, “
Dynamic Motion Response of an oil Tanker Moored With a Single Buoy Under Different Mooring System Failure Scenarios
,”
Ships Offshore Struct.
,
18
(
7
), pp.
923
936
.
You do not currently have access to this content.