Abstract

We develop and implement a neural operator (NOp) to predict the evolution of waves on the surface of water. The NOp uses a graph neural network (GNN) to connect randomly sampled points on the water surface and exchange information between them to make the prediction. Our main contribution is adding physical knowledge to the implementation, which allows the model to be more general and able to be used in domains of different geometries with no retraining. Our implementation also takes advantage of the fact that the governing equations are independent of rotation and translation to make training easier. In this work, the model is trained with data from a single domain with fixed dimensions and evaluated in domains of different dimensions with little impact to performance.

References

1.
Li
,
Z.
,
Kovachki
,
N.
,
Azizzadenesheli
,
K.
,
Liu
,
B.
,
Bhattacharya
,
K.
,
Stuart
,
A.
, and
Anandkumar
,
A.
,
2020
, “Neural Operator: Graph Kernel Network for Partial Differential Equations, 2003.03485,” arXiv:2003.03485 [cs, math, stat].
2.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
3.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
(
1
), pp.
686
707
.
4.
Sun
,
L.
,
Gao
,
H.
,
Pan
,
S.
, and
Wang
,
J.-X.
,
2020
, “
Surrogate Modeling for Fluid Flows Based on Physics-Constrained Deep Learning Without Simulation Data
,”
Comput. Methods Appl. Mech. Eng.
,
361
(
1
), p.
112732
.
5.
Xu
,
T.
, and
Valocchi
,
A. J.
,
2015
, “
Data-Driven Methods to Improve Baseflow Prediction of a Regional Groundwater Model
,”
Comput. Geosci.
,
85
(
Part B
), pp.
124
136
.
6.
Marino Moreno
,
F.
,
Deberaldini Netto
,
C.
,
Barros
,
M.
,
Fialho Coelho
,
J.
,
Freitas
,
L.
,
Mathias
,
M.
, and
Neto
,
L.
,
2022
, “
Enhancing the Forecast of Ocean Physical Variables through Physics Informed Machine Learning in the Santos Estuary, Brazil
,”
OCEANS 2022
,
Chennai, India
,
Feb. 21–24
.
7.
Baddoo
,
P. J.
,
Herrmann
,
B.
,
McKeon
,
B. J.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2021
, “
Physics-Informed Dynamic Mode Decomposition
,”
Proc. Math. Phys. Eng. Sci.
,
479
(
2271
), pp.
1
23
. doi.org/10.1098/rspa.2022.0576
8.
Mello
,
P. C.
,
Pérez
,
N.
,
Adamowski
,
J. C.
, and
Nishimoto
,
K.
,
2016
, “
Wave Focalization in a Wave Tank by Using Time Reversal Technique
,”
Ocean Eng.
,
123
(
1
), pp.
314
326
.
9.
Zhou
,
J.
,
Cui
,
G.
,
Hu
,
S.
,
Zhang
,
Z.
,
Yang
,
C.
,
Liu
,
Z.
,
Wang
,
L.
,
Li
,
C.
, and
Sun
,
M.
,
2020
, “
Graph Neural Networks: A Review of Methods and Applications
,”
AI Open
,
1
(
1
), pp.
57
81
.
10.
Kovachki
,
N.
,
Li
,
Z.
,
Liu
,
B.
,
Azizzadenesheli
,
K.
,
Bhattacharya
,
K.
,
Stuart
,
A.
, and
Anandkumar
,
A.
,
2022
, “
Neural Operator: Learning Maps Between Function Spaces With Applications to PDEs
,”
J. Mach. Learn. Res.
,
24
(
89
), pp.
1
97
. http://jmlr.org/papers/v24/21-1524.html
11.
Gilmer
,
J.
,
Schoenholz
,
S. S.
,
Riley
,
P. F.
,
Vinyals
,
O.
, and
Dahl
,
G. E.
,
2017
, “
Neural Message Passing for Quantum Chemistry
,”
International Conference on Machine Learning
,
Sydney, Australia
,
Aug. 6
.
12.
Simonovsky
,
M.
, and
Komodakis
,
N.
,
2017
, “
Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honululu, HI
,
July
.
13.
Li
,
Z.
,
Kovachki
,
N. B.
,
Azizzadenesheli
,
K.
,
Liu
,
B.
,
Bhattacharya
,
K.
,
Stuart
,
A.
, and
Anandkumar
,
A.
,
2021
, “
Fourier Neural Operator for Parametric Partial Differential Equations
,”
International Conference on Learning Representations
,
Vienna, Austria
,
May
.
14.
Biewald
,
L.
,
2020
, Experiment Tracking with Weights and Biases, https://wandb.ai/.
You do not currently have access to this content.