Abstract

In the process of coastal bridge construction, cofferdams become necessary facilities to ensure the construction environment is dry and safe. However, during the construction period of coastal bridges, extreme surges and waves caused by typhoons can impose huge hydrodynamic loads on the cofferdam and a potential threat to the safety and integrity of the cofferdam. Therefore, it becomes valuable to assess the hydrodynamic loads of bridge cofferdam under extreme waves. Meanwhile, in the harsh marine environment, waves tend to propagate in multiple directions. However, previous studies mainly focused on the hydrodynamic characteristics of cofferdam by waves that propagate in one direction. Few studies were carried out on the hydrodynamic characteristics of cofferdam under the action of extreme waves in multiple directions. To fill in the gaps in previous research, this study numerically studied the complex wave hydrodynamics of cofferdam under multidirectional extreme waves. Effects of several major factors, i.e., significant wave height, peak wave period, water depth, spreading angle, incident wave angle, and submergence depth were systematically analyzed. It is desired that present research could enhance our understanding of the complex wave hydrodynamics of bridge cofferdam under multidirectional focused waves.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Valeur
,
J. R.
,
2004
, “
Sediment Investigations Connected With the Building of the Øresund Bridge and Tunnel
,”
Geografisk Tidsskrift-Danish J. Geogr.
,
104
(
2
), pp.
1
12
.
2.
Yu
,
J. Q.
,
Huo
,
J.
,
Shi
,
Q.
,
Sheng
,
G.
, and
Zhang
,
H.
,
2013
, “
An Exploration on the Organizational Structure Design of the Hong Kong-Zhuhai-Macao Bridge Authority
,”
Proceedings of the 19th International Conference on Industrial Engineering and Engineering Management
,
Shanghai, China
,
Oct. 27–29
,
Springer Berlin,
Heidelberg
, pp.
975
985
.
3.
Ye
,
J.
,
2010
,
Construction Technologies of Super-Long Pile Foundation in Hangzhou Bay Bridge
.
Proceedings of the Deep Foundations and Geotechnical In Situ Testing
,
Shanghai, China
,
June 3–5
, pp.
232
237
.
4.
Cho
,
S. M.
,
Jeon
,
B. S.
,
Park
,
S. I.
, and
Yoon
,
H. C.
,
2009
, “
Geotextile Tube Application as the Cofferdam at the Foreshore with Large Tidal Range for Incheon Bridge Project
,”
Geosynthetics in Civil and Environmental Engineering: Geosynthetics Asia 2008 Proceedings of the 4th Asian Regional Conference on Geosynthetics
,
Shanghai, China
,
June 17–20
,
Springer Berlin,
Heidelberg
, pp.
591
596
.
5.
Ti
,
Z.
,
Wei
,
K.
,
Qin
,
S.
,
Mei
,
D.
, and
Li
,
Y.
,
2018
, “
Assessment of Random Wave Pressure on the Construction Cofferdam for Sea-Crossing Bridges Under Tropical Cyclone
,”
Ocean Eng.
,
160
, pp.
335
345
.
6.
Padgett
,
J.
,
DesRoches
,
R.
,
Nielson
,
B.
,
Yashinsky
,
M.
,
Kwon
,
O. S.
,
Burdette
,
N.
, and
Tavera
,
E.
,
2008
, “
Bridge Damage and Repair Costs From Hurricane Katrina
,”
J. Bridge Eng.
,
13
(
1
), pp.
6
14
.
7.
Li
,
Y.
,
Dong
,
Y.
,
Frangopol
,
D. M.
, and
Gautam
,
D.
,
2020
, “
Long-Term Resilience and Loss Assessment of Highway Bridges Under Multiple Natural Hazards
,”
Struct. Infrastruct. Eng.
,
16
(
4
), pp.
626
641
.
8.
Seiffert
,
B.
,
Ertekin
,
R. C.
, and
Robertson
,
I. N.
,
2014
, “
Experimental Investigation on the Role of Entrapped Air on Solitary Wave Forces on a Coastal Bridge Deck
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering
, Vol.
45431
,
San Francisco, CA
,
June 8–13
,
American Society of Mechanical Engineers
, p.
V04BT02A039.
9.
Seiffert
,
B. R.
,
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Experiments and Calculations of Cnoidal Wave Loads on a Coastal-Bridge Deck With Girders
,”
Eur. J. Mech.-B/Fluids
,
52
, pp.
191
205
.
10.
Hayatdavoodi
,
M.
, and
Cengiz Ertekin
,
R.
,
2015
, “
Nonlinear Wave Loads on a Submerged Deck by the Green–Naghdi Equations
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
1
), p.
011102
.
11.
Jin
,
J.
, and
Meng
,
B.
,
2011
, “
Computation of Wave Loads on the Superstructures of Coastal Highway Bridges
,”
Ocean Eng.
,
38
(
17–18
), pp.
2185
2200
.
12.
Zhao
,
E.
,
Sun
,
J.
,
Tang
,
Y.
,
Mu
,
L.
, and
Jiang
,
H.
,
2020
, “
Numerical Investigation of Tsunami Wave Impacts on Different Coastal Bridge Decks Using Immersed Boundary Method
,”
Ocean Eng.
,
201
, p.
107132
.
13.
Qu
,
K.
,
Ren
,
X. Y.
, and
Kraatz
,
S.
,
2017
, “
Numerical Investigation of Tsunami-Like Wave Hydrodynamic Characteristics and its Comparison With Solitary Wave
,”
Appl. Ocean Res.
,
63
, pp.
36
48
.
14.
Xu
,
G.
,
Chen
,
Q.
, and
Chen
,
J.
,
2018
, “
Prediction of Solitary Wave Forces on Coastal Bridge Decks Using Artificial Neural Networks
,”
J. Bridge Eng.
,
23
(
5
), p.
04018023
.
15.
Huang
,
W.
, and
Xiao
,
H.
,
2009
, “
Numerical Modeling of Dynamic Wave Force Acting on Escambia Bay Bridge Deck During Hurricane Ivan. Journal of Waterway, Port
,”
Coastal Ocean Eng.
,
135
(
4
), pp.
164
175
.
16.
Xiao
,
H.
,
Huang
,
W.
, and
Chen
,
Q.
,
2010
, “
Effects of Submersion Depth on Wave Uplift Force Acting on Biloxi Bay Bridge Decks During Hurricane Katrina
,”
Comput. Fluids
,
39
(
8
), pp.
1390
1400
.
17.
Xu
,
G.
, and
Cai
,
C. S.
,
2017
, “
Numerical Investigation of the Lateral Restraining Stiffness Effect on the Bridge Deck-Wave Interaction Under Stokes Waves
,”
Eng. Struct.
,
130
, pp.
112
123
.
18.
Hayatdavoodi
,
M.
,
Ertekin
,
R. C.
, and
Valentine
,
B. D.
,
2017
, “
Solitary and Cnoidal Wave Scattering by a Submerged Horizontal Plate in Shallow Water
,”
AIP Adv.
,
7
(
6
), p.
065212
.
19.
Fang
,
Q.
,
Hong
,
R.
,
Guo
,
A.
, and
Li
,
H.
,
2019
, “
Experimental Investigation of Wave Forces on Coastal Bridge Decks Subjected to Oblique Wave Attack
,”
J. Bridge Eng.
,
24
(
4
), p.
04019011
.
20.
Fang
,
Q.
,
Jia
,
J.
,
Guo
,
T.
,
Wang
,
Z.
, and
Liu
,
C.
,
2023
, “
Wave Forces Acting on the Coastal Bridge Deck Under Focused and Regular Waves
,”
Ocean Eng.
,
276
,
114239
.
21.
Douglass
,
S. L.
,
Chen
,
Q.
,
Olsen
,
J. M.
,
Edge
,
B. L.
, and
Brown
,
D.
,
2006
,
Wave Forces on Bridge Decks
,
Coastal Transportation Engineering Research and Education Center, University of South Alabama
,
Mobile, AL
.
22.
Cuomo
,
G.
,
Shimosako
,
K. I.
, and
Takahashi
,
S.
,
2009
, “
Wave-in-Deck Loads on Coastal Bridges and the Role of Air
,”
Coastal Eng.
,
56
(
8
), pp.
793
809
.
23.
Bradner
,
C.
,
Schumacher
,
T.
,
Cox
,
D.
, and
Higgins
,
C.
,
2011
, “
Experimental Setup for a Large-Scale Bridge Superstructure Model Subjected to Waves
,”
J. Waterw., Port, Coast. Ocean Eng.
,
137
(
1
), pp.
3
11
.
24.
Hayatdavoodi
,
M.
,
Seiffert
,
B.
, and
Ertekin
,
R. C.
,
2014
, “
Experiments and Computations of Solitary-Wave Forces on a Coastal-Bridge Deck. Part II: Deck With Girders
,”
Coastal Eng.
,
88
, pp.
210
228
.
25.
Seiffert
,
B.
,
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2014
, “
Experiments and Computations of Solitary-Wave Forces on a Coastal-Bridge Deck. Part I: Flat Plate
,”
Coastal Eng.
,
88
, pp.
194
209
.
26.
Xu
,
G.
, and
Cai
,
C. S.
,
2015
, “
Wave Forces on Biloxi Bay Bridge Decks With Inclinations Under Solitary Waves
,”
J. Perform. Constr. Facil.
,
29
(
6
), p.
04014150
.
27.
Moideen
,
R.
, and
Behera
,
M. R.
,
2021
, “
Numerical Investigation of Extreme Wave Impact on Coastal Bridge Deck Using Focused Waves
,”
Ocean Eng.
,
234
, p.
109227
.
28.
Qu
,
K.
,
Sun
,
W. Y.
,
Ren
,
X. Y.
,
Kraatz
,
S.
, and
Jiang
,
C. B.
,
2021
, “
Numerical Investigation on the Hydrodynamic Characteristics of Coastal Bridge Decks Under the Impact of Extreme Waves
,”
J. Coastal Res.
,
37
(
2
), pp.
442
455
.
29.
Qu
,
K.
,
Sun
,
W. Y.
,
Tang
,
H. S.
,
Jiang
,
C. B.
,
Deng
,
B.
, and
Chen
,
J.
,
2019
, “
Numerical Study on Hydrodynamic Load of Real-World Tsunami Wave at Highway Bridge Deck Using a Coupled Modeling System
,”
Ocean Eng.
,
192
, p.
106486
.
30.
Qu
,
K.
,
Tang
,
H. S.
,
Agrawal
,
A.
, and
Cai
,
Y.
,
2017
, “
Hydrodynamic Effects of Solitary Waves Impinging on a Bridge Deck with air Vents
,”
J. Bridge Eng.
,
22
(
7
), p.
04017024
.
31.
Xu
,
G.
,
Cai
,
C. S.
, and
Chen
,
Q.
,
2016
, “
Countermeasure of Air Venting Holes in the Bridge Deck–Wave Interaction Under Solitary Waves
,”
J. Perform. Constr. Facil.
,
31
(
1
), p.
04016071
.
32.
Wei
,
Z.
, and
Dalrymple
,
R. A.
,
2016
, “
Numerical Study on Mitigating Tsunami Force on Bridges by an SPH Model
,”
J. Ocean Eng. Marine Energy
,
2
(
3
), pp.
365
380
.
33.
Sun
,
W. Y.
,
Qu
,
K.
,
Kraatz
,
S.
,
Deng
,
B.
, and
Jiang
,
C. B.
,
2020
, “
Numerical Investigation on Performance of Submerged Porous Breakwater to Mitigate Hydrodynamic Loads of Coastal Bridge Deck Under Solitary Wave
,”
Ocean Eng.
,
213
, p.
107660
.
34.
Qu
,
K.
,
Sun
,
W. Y.
,
Kraatz
,
S.
,
Deng
,
B.
, and
Jiang
,
C. B.
,
2020
, “
Effects of Floating Breakwater on Hydrodynamic Load of Low-Lying Bridge Deck Under Impact of Cnoidal Wave
,”
Ocean Eng.
,
203
, p.
107217
.
35.
Qu
,
K.
,
Wen
,
B. H.
,
Ren
,
X. Y.
,
Kraatz
,
S.
,
Sun
,
W. Y.
,
Deng
,
B.
, and
Jiang
,
C. B.
,
2020
, “
Numerical Investigation on Hydrodynamic Load of Coastal Bridge Deck Under Joint Action of Solitary Wave and Wind
,”
Ocean Eng.
,
217
, p.
108037
.
36.
Wen
,
B. H.
,
Qu
,
K.
,
Lan
,
G. Y.
,
Sun
,
W. Y.
,
Yao
,
Y.
,
Deng
,
B.
, and
Jiang
,
C. B.
,
2022
, “
Numerical Study on Hydrodynamic Characteristics of Coastal Bridge Deck Under Joint Action of Regular Waves and Wind
,”
Ocean Eng.
,
245
, p.
110450
.
37.
Qu
,
K.
,
Tang
,
H. S.
,
Agrawal
,
A.
,
Cai
,
Y.
, and
Jiang
,
C. B.
,
2018
, “
Numerical Investigation of Hydrodynamic Load on Bridge Deck Under Joint Action of Solitary Wave and Current
,”
Appl. Ocean Res.
,
75
, pp.
100
116
.
38.
Qu
,
K.
,
Wen
,
B. H.
,
Yao
,
Y.
,
Sun
,
W. Y.
, and
Jiang
,
C. B.
,
2022
, “
Numerical Study on Hydrodynamic Characteristics of Movable Coastal Bridge Deck Under Joint Action of Solitary Wave and Current
,”
Ocean Eng.
,
262
, p.
112143
.
39.
Liu
,
S. X.
,
Li
,
Y. C.
, and
Li
,
G. W.
,
2007
, “
Wave Current Forces on the Pile Group of Base Foundation for the East Sea Bridge, China
,”
J. Hydrodyn.
,
19
(
6
), pp.
661
670
.
40.
Li
,
Y. C.
,
Wang
,
F. L.
, and
Wang
,
H. R.
,
1992
, “
Wave-Current Forces on Vertical Piles in Side by Side Arrangement
,”
Proceedings of the Second International Offshore and Polar Engineering Conference
,
San Francisco, CA
,
June 14–19
,
OnePetro
.
41.
Wang
,
Z.
, and
Qiu
,
W.
,
2021
, “
Characteristics of Wave Forces on Pile Group Foundations for Sea-Crossing Bridges
,”
Ocean Eng.
,
235
, p.
109299
.
42.
Wang
,
Z.
, and
Qiu
,
W.
,
2022
, “
Mechanical Model for Predicting Wave Loads on Complex Pile Group Foundations Under Linear Wave Action
,”
Eng. Anal. Boundary Elem.
,
145
, pp.
321
334
.
43.
Xu
,
B.
,
Wei
,
K.
,
Qin
,
S.
, and
Hong
,
J.
,
2020
, “
Experimental Study of Wave Loads on Elevated Pile Cap of Pile Group Foundation for Sea-Crossing Bridges
,”
Ocean Eng.
,
197
, p.
106896
.
44.
Qu
,
J.
,
Xue
,
L.
,
Wang
,
B.
, and
Ni
,
X.
,
2017
, “
Unified Empirical Relations for Total Inline Wave Forces on Pile-Supported Structures in Regular and Irregular Waves
,”
Ocean Eng.
,
145
, pp.
200
206
.
45.
Ji
,
X.
,
Liu
,
S.
,
Bingham
,
H. B.
, and
Li
,
J.
,
2015
, “
Multi-Directional Random Wave Interaction With an Array of Cylinders
,”
Ocean Eng.
,
110
, pp.
62
77
.
46.
Ji
,
X.
,
Liu
,
S.
,
Li
,
J.
, and
Jia
,
W.
,
2015
, “
Experimental Investigation of the Interaction of Multidirectional Irregular Waves With a Large Cylinder
,”
Ocean Eng.
,
93
, pp.
64
73
.
47.
Wang
,
Z.
,
Qiu
,
W.
, and
Jiang
,
M.
,
2023
, “
Random Wave Action on Pile Group Foundations With Complex Geometry for Sea-Crossing Bridges
,”
Ocean Eng.
,
269
, p.
113525
.
48.
Zhang
,
H.
,
Liu
,
S.
, and
Li
,
J.
,
2023
, “
Multi-Directional Irregular Wave Forces Acting on a Tandem Pile Group
,”
Appl. Ocean Res.
,
135
, p.
103542
.
49.
Wei
,
K.
,
Liu
,
Q.
, and
Qin
,
S.
,
2020
, “
Nonlinear Assessment of Offshore Steel Trestle Subjected to Wave and Current Loads
,”
Ships Offshore Struct.
,
15
(
5
), pp.
479
491
.
50.
Bonakdar
,
L.
, and
Oumeraci
,
H.
,
2015
, “
Pile Group Effect on the Wave Loading of a Slender Pile: A Small-Scale Model Study
,”
Ocean Eng.
,
108
, pp.
449
461
.
51.
Bonakdar
,
L.
,
Oumeraci
,
H.
, and
Etemad-Shahidi
,
A.
,
2015
, “
Wave Load Formulae for Prediction of Wave-Induced Forces on a Slender Pile Within Pile Groups
,”
Coastal Eng.
,
102
, pp.
49
68
.
52.
Guo
,
X.
,
Wang
,
B.
,
Mei
,
C. C.
, and
Liu
,
H.
,
2017
, “
Scattering of Periodic Surface Waves by Pile-Group Supported Platform
,”
Ocean Eng.
,
146
, pp.
46
58
.
53.
Zhang
,
H.
,
Liu
,
S.
,
Li
,
J.
,
Zhang
,
R.
, and
Hao
,
J.
,
2019
, “
Interactions Between Multi-Directional Irregular Waves and a Pile Group in a Side-by-Side Arrangement: Statistical Analysis
,”
Coastal Eng.
,
147
, pp.
115
134
.
54.
Noh
,
J.
,
Lee
,
S.
,
Kim
,
J. S.
, and
Molinas
,
A.
,
2012
, “
Numerical Modeling of Flow and Scouring Around a Cofferdam
,”
J. Hydro-Environ. Res.
,
6
(
4
), pp.
299
309
.
55.
Kang
,
A.
,
Zhu
,
B.
,
Lin
,
P.
,
Ju
,
J.
,
Zhang
,
J.
, and
Zhang
,
D.
,
2020
, “
Experimental and Numerical Study of Wave-Current Interactions with a Dumbbell-Shaped Bridge Cofferdam
,”
Ocean Eng.
,
210
, p.
107433
.
56.
Qin
,
C.
,
Duan
,
L.
,
Wang
,
D.
,
Duan
,
B.
,
Fan
,
M.
, and
Wang
,
H.
,
2023
, “
Three-Dimensional Numerical Simulation of Wave-Induced Seabed Response Around a Dumbbell-Shaped Cofferdam
,”
Appl. Ocean Res.
,
134
, p.
103501
.
57.
Bihs
,
H.
,
Kamath
,
A.
,
Chella
,
M. A.
,
Aggarwal
,
A.
, and
Arntsen
,
ØA
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
58.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, Vol.
2
, ed.,
DCW industries
,
La Canada, CA
,
103
217
.
59.
Durbin
,
P. A.
,
2009
, “
Limiters and Wall Treatments in Applied Turbulence Modeling
,”
Fluid Dyn. Res.
,
41
(
1
), p.
012203
.
60.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
61.
Peng
,
D.
,
Merriman
,
B.
,
Osher
,
S.
,
Zhao
,
H.
, and
Kang
,
M.
,
1999
, “
A PDE-Based Fast Local Level Set Method
,”
J. Comput. Phys.
,
155
(
2
), pp.
410
438
.
62.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.
63.
Van der Vorst
,
H. A.
,
1992
, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.
64.
Jiang
,
G. S.
, and
Shu
,
C. W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
65.
Jiang
,
G. S.
, and
Peng
,
D.
,
2000
, “
Weighted ENO Schemes for Hamilton–Jacobi Equations
,”
SIAM J, Sci. Comput.
,
21
(
6
), pp.
2126
2143
.
66.
Shu
,
C. W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
67.
Berthelsen
,
P. A.
, and
Faltinsen
,
O. M.
,
2008
, “
A Local Directional Ghost Cell Approach for Incompressible Viscous Flow Problems With Irregular Boundaries
,”
J. Comput. Phys.
,
227
(
9
), pp.
4354
4397
.
68.
Judge
,
F. M.
,
Hunt-Raby
,
A. C.
,
Orszaghova
,
J.
,
Taylor
,
P. H.
, and
Borthwick
,
A. G.
,
2019
, “
Multi-Directional Focused Wave Group Interactions With a Plane Beach
,”
Coastal Eng.
,
152
, p.
103531
.
69.
Kang
,
A.
,
Zhu
,
B.
,
Han
,
J.
,
Zhang
,
J.
, and
Yang
,
Z.
,
2019
, “
Experimental Study of Focused Wave Actions on Dumbbell-Shaped Sea-Crossing Bridge Cofferdam
,”
Tumu Gongcheng Xuebao
,
52
(
10
), pp.
93
100
.
70.
Hunt
,
A.
,
2003
, “
Extreme Waves, Overtopping and Flooding at Sea Defences
,”
DPhil thesis
,
University of Oxford
.
You do not currently have access to this content.