Abstract

Marine icing due to freezing sea spray has been attributed to many safety incidences. Prediction of sea spray icing is necessary for operational safety, design optimization, and structural health. In general, lack of detailed full-scale measurements due to the complexity and costs make validation difficult. The next best option is that of controlled laboratory experiments. The current study is the first study in the field of sea spray icing that investigates the use of new data science technologies like machine learning and feature engineering for the prediction of sea spray icing based on data collected from controlled laboratory experiments. A new prediction model dubbed “Spice” is proposed. Spice is designed “bottom-up” from experimentally collected data, and thus, if the input variables are accurately known, it could be said to be highly accurate within the tested range compared to existing theoretical models. Results from the current study show promising trends; however, more experiments are suggested for increasing the range of confident predictions and reducing the skewness of the training data. Results from spice are compared with five existing models and give icing rates in various conditions in the middle of the spectrum of the other models. It is discussed how validation from two existing full-scale icing measurements from literature proves to be challenging, and more detailed measurements are suggested for the purpose of validation.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kulyakhtin
,
A.
,
2014
, “
Numerical Modelling and Experiments on Sea Spray Icing
,”
Doctoral thesis
,
Department of Civil and Transport Engineering. Norwegian University of Science and Technology (NTNU), Norway
.
2.
Stallabrass
,
J.
,
1971
, “
Meteorological and Oceanographic Aspects of Trawler Icing off the Canadian East Coast
,”
Mar. Obs.
,
41
(
233
), pp.
107
121
.
3.
Lozowski
,
E. P.
,
Szilder
,
K.
, and
Makkonen
,
L.
,
2000
, “
Computer Simulation of Marine ice Accretion
,”
Philos. Trans. R. Soc. London, Ser. A
,
358
(
1776
), pp.
2811
2845
.
4.
Stallabrass
, “
Trawler Icing—a Compilation of Work Done At N. R. C.
,” Mechanical Engineering Report MD-56, N.R.C. No. 19372 (National Research Council, Ottawa Canada),
1980
.
5.
Zakrzewski
,
W. P.
,
1987
, “
Splashing a Ship With Collision-Generated Spray
,”
Cold Reg. Sci. Technol.
,
14
(
1
), pp.
65
83
.
6.
Kulyakhtin
,
A.
,
Shipilova
,
O.
,
Libby
,
B.
, and
Løset
,
S.
,
2012
, “
Full-Scale 3D CFD Simulation of Spray Impingement on a Vessel Produced by Ship-Wave Interaction
,”
Proceedings of the 21st IAHR Intl. Symposium on Ice (2012)
,
Dalian, China
,
June 11–15
, pp.
1129
1141
.
7.
Samuelsen
,
E. M.
,
Edvardsen
,
K.
, and
Graversen
,
R. G.
,
2017
, “
Modelled and Observed Sea-Spray Icing in Arctic-Norwegian Waters
,”
Cold Reg. Sci. Technol.
,
134
, pp.
54
81
.
8.
Battisti
,
L.
,
Fedrizzi
,
R.
,
Brighenti
,
A.
, and
Laakso
,
T.
,
2006
, “
Sea Ice and Icing Risk for Offshore Wind Turbines
,”
OWEMES 2006
,
Citavecchia, Italy: OWEMES
,
Apr. 20–22
.
9.
Dehghani-Sanij
,
A. R.
,
Dehghani
,
S. R.
,
Naterer
,
G. F.
, and
Muzychka
,
Y. S.
,
2017
, “
Sea Spray Icing Phenomena on Marine Vessels and Offshore Structures: Review and Formulation
,”
Ocean Eng.
,
132
, pp.
25
39
.
10.
Deshpande
,
S.
,
Sæterdal
,
A.
, and
Sundsbø
,
P.-A.
,
2021
, “
Sea Spray Icing: The Physical Process and Review of Prediction Models and Winterization Techniques
,”
ASME J. Offshore Mech. Arct. Eng.
,
143
(
6
), p. 061601.
11.
Brown
,
R. D.
, and
Roebber
,
P.
(
1985
).
The Scope of the Ice Accretion Problem in Canadian Waters Related to Offshore Energy and Transportation
(Canadian Climate Centre Report 85-13.
12.
ISO (International Organization for Standardization)
,
2017
,
ISO 35106: Petroleum and Natural Gas Industries—Arctic Operations—Metocean, Ice, and Seabed Data
.
13.
Bodaghkhani
,
A.
,
Dehghani
,
S.-R.
,
Muzychka
,
Y. S.
, and
Colbourne
,
B.
,
2016
, “
Understanding Spray Cloud Formation by Wave Impact on Marine Objects
,”
Cold Reg. Sci. Technol.
,
129
, pp.
114
136
.
14.
Deshpande
,
S.
,
Sæterdal
,
A.
, and
Sundsbø
,
P.-A.
,
2024
, “
Experiments With Sea Spray Icing: Investigation of Icing Rates.
ASME J. Offshore Mech. Arct. Eng.
,
146
(
1
), p.
011601
. DOI: 10.1115/1.4062255
15.
Li
,
S.
,
Qin
,
J.
, and
Paoli
,
R.
,
2021
, “
Data-Driven Machine Learning Model for Aircraft Icing Severity Evaluation
,”
J. Aerosp. Inf. Syst.
,
18
(
11
), pp.
876
880
.
16.
Li
,
S.
,
Qin
,
J.
,
He
,
M.
, and
Paoli
,
R.
,
2020
, “
Fast Evaluation of Aircraft Icing Severity Using Machine Learning Based on XGBoost
,”
Aerospace
,
7
(
4
), p.
36
.
17.
Miles
,
E. S.
,
Steiner
,
J. F.
, and
Brun
,
F.
,
2017
, “
Highly Variable Aerodynamic Roughness Length (z0) for a Hummocky Debris-Covered Glacier
,”
J. Geophys. Res.: Atmos.
,
122
(
16
), pp.
8447
8466
.
18.
Masters
,
G. M.
,
2004
,
Renewable and Efficient Electric Power Systems
,
Wiley-Interscience
,
Hoboken, NJ
.
19.
Ryerson
,
C. C.
,
1995
, “
Superstructure Spray and Ice Accretion on a Large U.S. Coast Guard Cutter
,”
Atmos. Res.
,
36
(
3–4
), pp.
321
337
.
20.
Chicco
,
D.
,
Warrens
,
M. J.
, and
Jurman
,
G.
,
Jul. 2021
, “
The Coefficient of Determination R-Squared Is More Informative Than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation
,”
PeerJ. Comput. Sci.
,
7
, pp.
1
24
.
21.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Knowledge Discovery and Data Mining (KDD)
,
San Francisco, CA
,
Aug. 13–17
.
22.
Pedregosa Fabianpedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
23.
Chowdhury
,
S.
,
Lin
,
Y.
,
Liaw
,
B.
, and
Kerby
,
L.
, “
Evaluation of Tree Based Regression Over Multiple Linear Regression for Non-Normally Distributed Data in Battery Performance
,”
International Conference on Intelligent Data Science Technologies and Applications (IDSTA)
,
Online
,
Sept. 5–7
.
24.
Colton
,
J. A.
, and
Bower
,
K. M.
,
2002
, “
Some Misconceptions About R2
,”
Int. Soc. Six Sigma Prof., EXTRAOrdinary Sense
,
3
(
2
), pp.
20
22
.
25.
Bodaghkhani
,
A.
,
Muzychka
,
Y. S.
, and
Colbourne
,
B.
,
2018
, “
Three-Dimensional Numerical and Experimental Simulation of Wave Run-Up Due to Wave Impact With a Vertical Surface
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081225
.
27.
Dong
,
G.
, and
Liu
,
H.
,
2018
,
Feature Engineering for Machine Learning and Data Analytics
,
CRC Press—Taylor and Francis Group
,
London, UK
.
28.
Friedman
,
J. H.
, and
Popescu
,
B. E.
,
2008
, “
Predictive Learning via Rule Ensembles
,”
Source: Ann. Appl. Stat.
,
2
(
3
), pp.
916
954
. doi: .
29.
McConaghy
,
T.
,
2011
, “FFX: Fast, Scalable, Deterministic Symbolic Regression Technology,”
Genetic Programming Theory and Practice IX
,
Springer
,
New York
, pp.
235
260
.
31.
Molnar
,
C.
,
2023
,
Interpretable Machine Learning. A Guide for Making Black Box Models Explainable
. https://christophm.github.io/interpretable-ml-book/.
32.
Molnar
,
C.
, “
Python Package for RuleFit
.”. https://github.com/christophM/rulefit/blob/master/LICENSE, Accessed March 7, 2023.
33.
McConaghy
,
T.
, “
Python Package for FFX
,”
Solido Design Automation Inc
. https://github.com/natekupp/ffx/blob/master/LICENSE. Accessed March 7, 2023.
34.
Bergstra
,
J.
,
Komer
,
B.
,
Eliasmith
,
C.
,
Yamins
,
D.
, and
Cox
,
D. D.
,
2015
, “
Hyperopt: A Python Library for Model Selection and Hyperparameter Optimization
,”
Comput. Sci. Discov.
,
8
(
1
), p.
014008
.
35.
Zakrzewski
,
W. P.
,
1986
, “
Icing of Fishing Vessels. Part I: Splashing a Ship With Spray
,”
Proceedings of the 8th Int. IAHR Symposium on Ice
,
Iowa City
,
Aug. 18–22, 1986
, pp.
179
194
. Vol.
2
,
1986
.
36.
National Meteorological Library and Archive, UK
,
2010
,
The Beaufort Scale
.
37.
Horjen
,
I.
,
2013
, “
Numerical Modeling of Two-Dimensional Sea Spray Icing on Vessel-Mounted Cylinders
,”
Cold Reg. Sci. Technol.
,
93
, pp.
20
35
.
38.
Jørgensen
,
T. S.
1985, “
Sea Spray Characteristics on a Semi-Submersible Drilling Rig—STF60 F 85015
.”
39.
Horjen
,
I.
,
1990
,
Numerical Modeling of Time-Dependent Marine Icing, Anti-Icing and De-Icing
,
Trondheim University
,
Norway
.
40.
Massey
,
B.
, and
Ward-Smith
,
J.
,
2006
,
Mechanics of Fluids, Eighth
,
Taylor & Francis
,
London
.
41.
Kovrova
,
A.
,
Korotun
,
C.
, and
Panov
,
V.
,
1969
,
Gidrometeorologicheskiye Usloviya Obledeneniya na Sudakh v Arkticheskikh Moryakh. (Hydrometeorological Conditions of Icing on Ships in the Arctic Seasa)
,
Arkticheskii i Antarkticheskii Nauchno-lssledovatiel’skii lnstitut
,
Leningrad
.
42.
Aksjutin
,
L. R.
,
1979
, “
Icing of Ships. Leningrad: Sudostroenye (in Russian)
,”
Oidrometeoizdat
,
Leningrad
,
March
.
43.
Kulyakhtin
,
A.
, and
Tsarau
,
A.
,
2014
, “
A Time-Dependent Model of Marine Icing With Application of Computational Fluid Dynamics
,”
Cold Reg. Sci. Technol.
,
104–105
, pp.
33
44
.
44.
Ryerson
,
2013
,
Icing Management for Coast Guard Assets
,
U.S. Army Engineer Research and Development Center
,
Hanover, NH
.
45.
Borisenkov
,
Y. P.
,
1972
, “
On the Theory of Spray Icing of Ships.: Arctic and Antarctic Scientific Research Institute. Trudy 298. Leningrad: Gidrometeoizdat (in Russian), 34-43
.
46.
Samuelsen
,
E. M.
,
2017
, “
Prediction of Ship Icing in Arctic Waters—Observations and Modelling for Application in Operational Weather Forecasting
,” Doctoral thesis,
UiT, The Arctic University of Norway
,
Tromsø, Norway
.
47.
Forest
,
T. W.
,
Lozowski
,
E. P.
, and
Gagnon
,
R.
,
2005
, “
Estimating Marine Icing on Offshore Structures Using RIGICE04
,”
Proceedings of the International Workshop on Atmospheric Icing on Structures (IWAIS)
,
Montreal, Canada
,
June
.
48.
Horjen
,
I.
, and
Vefsnmo
,
S.
,
1985
, “
A Kinematic and Thermodynamic Analysis of Sea Spray (in Norwegian), Offshore Icing—Phase II. Norwegian Hydrodynamic Laboratory (NHI). Report No. STF60 F85014
.”
49.
Makkonen
,
L.
,
Brown
,
R. D.
, and
Mitten
,
P. T.
,
1991
, “
Comments on ‘Prediction of Vessel Icing for Near-Freezing Sea Temperatures’
,”
Weather Forecast
,
6
(
4
), pp.
565
567
.
50.
Kulyakhtin
,
A.
, and
Løset
,
S.
,
2011
, “
Sea Spray Icing : In-Cloud Evaporation. Semi- Analytical and Numerical Investigations
,” the 14th International Workshop on Atmospheric Icing of Structures, Chongqing, China.
May 8–13
.
51.
Makkonen
,
L.
,
1987
, “
Salinity and Growth Rate of Ice Formed by Sea Spray
,”
Cold Reg. Sci. Technol.
,
14
(
2
), pp.
163
171
.
52.
Overland
,
J. E.
,
Pease
,
C. H.
,
Preisendorfer
,
R. W.
, and
Comiskey
,
A. L.
,
1986
, “
Prediction of Vessel Icing
,”
J. Clim. Appl. Meteorol.
,
25
(
12
), pp.
1793
1806
.
53.
Roebber
,
P.
, and
Mitten
,
P.
(
1987
).
Modelling and Measurement of Icing in Canadian Waters
Report (Canadian Climate Centre), No. 87-15.
You do not currently have access to this content.