Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Increasing ship traffic in ice-covered waters leads to more frequent collisions between ship propellers and sea ice which causes extreme impulse loads on the propeller. These loads are transferred through the propeller shaft to the sliding bearings of the stern tube, especially, the aft stern tube bearings. Extreme bearing loads can lead to mixed friction regimes that cause wear in the bearings and eventually result in a failure of the entire propulsion system. The effect of ice-induced loads on the contact conditions in the sliding bearings is widely unknown. Thus, a study of the influence of these loads on the contact conditions and wear behavior in stern tube bearings resulting from observed sea ice conditions and operating conditions of the ship is necessary. This article aims to investigate the influence of ice collision loads on the contact conditions in the bearings of the stern tube of the research vessel SA Agulhas II. For this purpose, an elastohydrodynamic simulation and a multibody simulation based on field measurements were performed. As a result, this article identifies the operating condition thresholds (i.e., propeller torque and rotational speed) during propeller–ice collisions that cause mixed friction conditions in the bearings. On the basis of these conditions, a risk map is generated to assess the actual wear risk by including the frequency of occurrence of the corresponding mixed friction condition over the duration of a voyage.

References

1.
Sugimura
,
T.
,
Yamaguchi
,
H.
, and
Yabuki
,
H.
, “
Development and Implementation of an Arctic Sea Route Search System in Volume 7: Polar and Arctic Sciences and Technology
,”
Am. Soc. Mech. Eng.
, p.
06212021
.
2.
Frame
,
B.
,
Liggett
,
D.
,
Lindström
,
K.
,
Roura
,
R. M.
, and
van der Watt
,
L.-M.
,
2022
, “
Tourism and Heritage in Antarctica: Exploring Cultural, Natural and Subliminal Experiences
,”
Polar Geogr.
,
45
(
1
), pp.
37
57
.
3.
Hagesteijn
,
G.
,
Brouwer
,
J.
, and
Bosman
,
R.
,
2012
, “
Development of a Six-Component Blade Load Measurement Test Setup for Propeller-Ice Impact
,”
Volume 6: Materials Technology; Polar and Arctic Sciences and Technology; Petroleum Technology Symposium
,
Rio de Janeiro, Brazil
,
July 1–6
,
American Society of Mechanical Engineers
, 0701, pp.
607
616
.
4.
Vartdal
,
B.
,
Gjestland
,
T.
, and
Arvidsen
,
T.
,
2009
, “
Lateral Propeller Forces and Their Effects on Shaft Bearings
,”
First International Symposium on Marine Propulsors
,
Trondheim, Norway
,
June 22–24
, pp.
475
481
.
5.
DNV
, “Safeguard Shaft Seals and Propeller Shaft Bearings—Avoid Costly Failures,” https://www.dnv.com/news/safeguard-shaft-seals-and-propeller-shaft-bearings-avoid-costly-failures-215171. Accessed January 12, 2023.
6.
Lehmann
,
B.
,
Gutiérrez Guzmán
,
F.
, and
Jacobs
,
G.
,
2022
, “
Einfluss von Eiskollisionslasten am Propeller auf die Kontaktzustände in den Antriebsstranggleitlagern von Schiffen
,”
Tribol. Schmierungstech.
,
69
(
3
), pp.
5
17
.
7.
Sampson
,
R.
,
Atlar
,
M.
,
St John
,
J. W.
, and
Sasaki
,
N.
,
2013
, “
Podded Propeller Ice Interaction in a Cavitation Tunnel
,”
Proceedings of the Third International Symposium on Marine Propulsors SMP
, Vol.
2013
,
Launceston, Tasmania, Australia
,
May 5–8
, pp.
34
46
.
8.
Wang
,
C.
,
Xiong
,
W. P.
,
Chang
,
X.
,
Ye
,
L. Y.
, and
Li
,
X.
,
2018
, “
Analysis of Variable Working Conditions for Propeller-Ice Interaction
,”
Ocean Eng.
,
156
, pp.
277
293
.
9.
Zhou
,
L.
,
Wang
,
F.
,
Diao
,
F.
,
Ding
,
S.
,
Yu
,
H.
, and
Zhou
,
Y.
,
2019
, “
Simulation of Ice-Propeller Collision With Cohesive Element Method
,”
J. Mar. Sci. Eng.
,
7
(
10
), p.
349
.
10.
de Waal
,
R.
,
Bekker
,
A.
, and
Heyns
,
P. S.
,
2018
, “
Indirect Load Case Estimation for Propeller-Ice Moments From Shaft Line Torque Measurements
,”
Cold Reg. Sci. Technol.
,
151
, pp.
237
248
.
11.
Nickerson
,
B. M.
, and
Bekker
,
A.
,
2022
, “
Inverse Model for the Estimation of Ice-Induced Propeller Moments Using Modal Superposition
,”
Appl. Math. Model.
,
102
, pp.
640
660
.
12.
Ikonen
,
T.
,
Peltokorpi
,
O.
, and
Karhunen
,
J.
,
2015
, “
Inverse Ice-Induced Moment Determination on the Propeller of an Ice-Going Vessel
,”
Cold Reg. Sci. Technol.
,
112
, pp.
1
13
.
13.
DNV GL AS
,
2017
, “Rules for Classification Ships: Part 6 Additional Class Notations Chapter 6 Cold Climate.”
14.
Chen
,
Y.-C.
,
2017
, “
A Tutorial on Kernel Density Estimation and Recent Advances
,”
Biostat. Epidem.
,
1
(
1
), pp.
161
187
.
15.
Lane
,
D. M.
,
Scott
,
D.
,
Hebl
,
M.
,
Guerra
,
R.
,
Osherso
,
D.
, and
Zimmer
,
H.
,
Introduction to Statistics
, Rice University, University of Houston.
16.
Hyndman
,
R. J.
,
1995
, “The Problem With Sturges’ Rule for Constructing Histograms.”
17.
AVL-List GmbH
, “EXCITE Power Unit User Manual (R2022.1).”
18.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
19.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
220
229
.
20.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
21.
König
,
F.
,
Sous
,
C.
, and
Jacobs
,
G.
,
2021
, “
Numerical Prediction of the Frictional Losses in Sliding Bearings During Start-Stop Operation
,”
Friction
,
9
(
3
), pp.
583
597
.
22.
Fleischer
,
G.
,
Gröger
,
H.
, and
Thum
,
H.
,
1980
,
Verschleiß und Zuverlässigkeit
,
VEB Verlag Technik
,
Berlin
.
23.
König
,
F.
,
2020
,
Prognose des Verschleißverhaltens ölgeschmierter Gleitlager im Mischreibungsbetrieb
,
Verlagsgruppe Mainz GmbH
,
Aachen
.
24.
Meier
,
V.
,
Illner
,
T.
,
Jacobs
,
G.
, and
Deters
,
L.
,
2013
,
Gleitlagerverschleißgrenzen, Einsatzgrenzen von hydrodynamischen Weißmetallgleitlagern infolge von Verschleiß
,
FVV
,
Heft 992, Frankfurt am Main
.
25.
Hebenstreit
,
H.
,
Beilicke
,
R.
,
Burghardt
,
G.
,
Jacobs
,
G.
,
Bartel
,
D.
, and
Gleitlagerverschleißgrenzen
,
I. I.
,
2022
,
Einsatzgrenzen von hydrodynamischen Radialgleitlagern infolge von Verschleiß Am
,
FVA
,
Frankfurt am Main
.
26.
Xing
,
H.
,
Wu
,
Q.
,
Wu
,
Z.
, and
Duan
,
S.
,
2012
, “
Elastohydrodynamic Lubrication Analysis of Marine Sterntube Bearing Based on Multi-Body Dynamics
,”
Energy Procedia
,
16
(Issue B), pp.
1046
1051
.
27.
Sverko
,
D.
, and
Sestan
,
A.
,
2010
, “
Experimental Determination of Stern Tube Journal Bearing Behaviour
,”
Brodogradnja
,
61
(
2
), pp.
130
141
.
28.
Rossopoulos
,
G. N.
,
Papadopoulos
,
C. I.
, and
Leontopoulos
,
C.
,
2020
, “
Tribological Comparison of an Optimum Single and Double Slope Design of the Stern Tube Bearing, Case Study for a Marine Vessel
,”
Tribol. Int.
,
150
, p.
106343
.
You do not currently have access to this content.