Abstract

This article presents a joint statistical model, which is needed in probabilistic design and structural risk assessment, that has been fitted to data of wind and wave conditions for an offshore location off South Brittany. The data are from a numerical model and contain hourly values for several wind and wave variables over a period of 32 years. The joint distribution presented in this article considers the variables wind direction, mean wind speed, significant wave height, wave direction, and peak period. A conditional model for turbulence given wind speed is introduced to yield an additional variable for the joint model. The joint model is constructed as a product of marginal and conditional models for the various variables. Additionally, the fitted models will be used to construct environmental contours for some of the variables. For significant wave height, various models are used to obtain different extreme value estimates, illustrating the uncertainties involved in extrapolating statistical models beyond the support of the data, and a discussion on the use of nonparametric copulas for the joint distribution is presented. Moreover, bootstrap has been performed to estimate the uncertainty in estimated model parameters from sampling variability. The effect of changing which variable to model as the marginal in a conditional model is illustrated by switching from wind speed to significant wave height. Such joint distribution models are important inputs for design of offshore structures, and in particular for offshore wind turbines, and the influence of the joint model in design is illustrated by a simple case study. This article is an extension of the conference paper by Vanem et al. (2023, “A Joint Probability Distribution Model for Multivariate Wind and Wave Conditions,” 42nd International Conference on Ocean, Offshore and Arctic Engineering).

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Meucci
,
A.
,
Young
,
I. R.
, and
Breivik
,
Ø.
,
2018
, “
Wind and Wave Extremes From Atmosphere and Wave Model Ensembles
,”
J. Climate
,
31
(
21
), pp.
8819
8842
.
2.
Mathisen
,
J.
, and
Bitner-Gregersen
,
E.
,
1990
, “
Joint Distributions for Significant Wave Height and Wave Zero-Up-Crossing Period
,”
Appl. Ocean. Res.
,
12
(
1
), pp.
93
103
.
3.
Johannessen
,
K.
,
Meling
,
T. S.
, and
Haver
,
S.
,
2002
, “
Joint Disstribution for Wind and Waves in the Northern North Sea
,”
Inter. J. Offshore Polar Eng.
,
12
(
1
), pp.
1
8
.
4.
Mittendorf
,
K. E.
,
2009
, “
Joint Description Methods of Wind and Waves for the Design of Offshore Wind Turbines
,”
Marine Tech. Soc. J.
,
43
(
3
), pp.
23
33
.
5.
Bitner-Gregersen
,
E. M.
,
2015
, “
Joint Met-Ocean Description for Design and Operation of Marine Structures
,”
Appl. Ocean. Res.
,
51
, pp.
279
292
.
6.
Horn
,
J.-T.
,
Bitner-Gregersen
,
E.
,
Krokstad
,
J.
,
Leira
,
B. J.
, and
Amdahl
,
J.
,
2018
, “
A New Combination of Conditional Environmental Distributions
,”
Appl. Ocean. Res.
,
73
, pp.
17
26
.
7.
Ditlevsen
,
O.
,
2002
, “
Stochastic Model for Joint Wave and Wind Loads on Offshore Structures
,”
Struct. Saf.
,
24
(
2–4
), pp.
139
163
.
8.
Silva-González
,
F.
,
Heredia-Zavoni
,
E.
, and
Montes-Iturrizaga
,
R.
,
2013
, “
Development of Environmental Contours Using Nataf Distribution Model
,”
Ocean. Eng.
,
58
, pp.
27
34
.
9.
Valamanesh
,
V.
,
Myers
,
M.
, and
Arwade
,
S.
,
2015
, “
Multivariate Analysis of Extreme Metocean Conditions for Offshore Wind Turbines
,”
Struct. Saf.
,
55
, pp.
60
69
.
10.
Ochi
,
M.
,
1978
, “
Wave Statistics for the Design of Ships and Ocean Structures
,”
SNAME Trans.
,
86
, pp.
47
76
.
11.
Villanueva
,
D.
,
Feijóo
,
A.
, and
Pazos
,
J. L.
,
2013
, “
Multivariate Weibull Distribution for Wind Speed and Wind Power Behaviour Assessment
,”
Resources
,
2
(
3
), pp.
370
384
.
12.
Nelsen
,
R. B.
,
2006
,
An Introduction to Copulas
,
Springer
,
New York
.
13.
Yang
,
X.-c.
, and
Zhang
,
Q.-h.
,
2013
, “
Joint Probability Distribution of Winds and Waves From Wave Simulation of 20 Years (1989–2008) in Bohai Bay
,”
Water Sci. Eng.
,
6
(
3
), pp.
296
307
.
14.
Vanem
,
E.
,
2016
, “
Joint Statistical Models for Significant Wave Height and Wave Period in a Changing Climate
,”
Marine Struct.
,
49
, pp.
180
205
.
15.
Fazeres-Ferradosa
,
T.
,
Taveira-Pinto
,
F.
,
Vanem
,
E.
, and
Reis
,
M. T.
,
2018
, “
Asymmetric Copula-Based Distribution Models for Met-Ocean Data in Offshore Wind Engineering Applications
,”
Wind Eng.
,
42
(
4
), pp.
304
334
.
16.
Zhai
,
J.
,
Yin
,
Q.
, and
Dong
,
S.
,
2017
, “
Metocean Design Parameter Estimation for Fixed Platform Based on Copula Functions
,”
J. Ocean Uni. China
,
16
(
4
), pp.
635
648
.
17.
Li
,
X.
, and
Zhang
,
W.
,
2020
, “
Long-Term Assessment of a Floating Offshore Wind Turbine Under Environmental Conditions With Multivariate Dependence Structures
,”
Renew. Energy
,
147
(Part 1), pp.
764
775
.
18.
Sheng
,
C.
, and
Hong
,
H.
,
2020
, “
On the Joint Tropical Cyclone Wind and Wave Hazard
,”
Struct. Saf.
,
84
, p.
101917
.
19.
Wei
,
K.
,
Shen
,
Z.
,
Ti
,
Z.
, and
Qin
,
S.
,
2021
, “
Trivariate Joint Probability Model of Typhoon-Induced Wind, Wave and Their Time Lag Based on the Numerical Simulation of Historical Typhoons
,”
Stoch. Environ. Res. Risk Assess.
,
35
(
2
), pp.
325
344
.
20.
Athanassoulis
,
G.
, and
Belibassakis
,
K.
,
2002
, “
Probabilistic Description of Metocean Parameters by Means of Kernel Density Models 1. Theoretical Backgrounds and First Results
,”
Appl. Ocean. Res.
,
24
(
1
), pp.
1
20
.
21.
Han
,
Q.
,
Hao
,
Z.
,
Hu
,
T.
, and
Chu
,
F.
,
2018
, “
Non-parametric Models for Joint Probabilistic Distributions of Wind Speed and Direction Data
,”
Renew. Energy
,
126
, pp.
1032
1042
.
22.
Sancetta
,
A.
, and
Satchell
,
S.
,
2004
, “
The Bernstein Copula and Its Applications to Modelling and Approximations of Multivariate Distributions
,”
Econometric Theory
,
20
(
3
), pp.
535
562
.
23.
Chen
,
Q.
,
Yu
,
C.
, and
Li
,
Y.
,
2022
, “
General Strategies for Modelling Joint Probability Density Function of Wind Speed, Wind Directin and Wind Attack Angle
,”
J. Wind Eng. Indus. Aerodynamics
,
225
, p.
104985
.
24.
Wang
,
H.
,
Xiao
,
T.
,
Gou
,
H.
,
Pu
,
Q.
, and
Bao
,
Y.
,
2023
, “
Joint Distribution of Wind Speed and Direction Over Complex Terrains Based on Nonparametic Copula Models
,”
J. Wind Eng. Indus. Aerodynamics
,
241
, p.
105509
.
25.
Aas
,
K.
,
Czado
,
C.
,
Frigessi
,
A.
, and
Bakken
,
H.
,
2009
, “
Pair-Copula Constructions of Multiple Dependence
,”
Insurance: Math. Econ.
,
44
(
2
), pp.
182
198
.
26.
Montes-Iturrizaga
,
R.
, and
Heredia-Zavoni
,
E.
,
2016
, “
Multivariate Environmental Contours Using C-vine Copulas
,”
Ocean. Eng.
,
118
, pp.
68
82
.
27.
Lin
,
Y.
, and
Dong
,
S.
,
2019
, “
Wave Energy Assessment Based on Trivariate Distribution of Significant Wave Height, Mean Period and Direction
,”
Appl. Ocean. Res.
,
87
, pp.
47
63
.
28.
Vanem
,
E.
,
Fekhari
,
E.
,
Dimitrov
,
N.
,
Kelly
,
M.
,
Cousin
,
A.
, and
Guiton
,
M.
,
2023
, “
A Joint Probability Distribution Model for Multivariate Wind and Wave Conditions
,”
42nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2023)
,
Melbourne, Australia
,
June 11–16
,
American Society of Mechanical Engineers (ASME)
.
29.
IEC
,
2005
,
IEC 61400-1. Wind Turbines—Part 1: Design Requirements
, 3rd ed, International Electrotechnical Commission, Geneva.
30.
Gaertner
,
E.
,
Rinker
,
J.
,
Sethuraman
,
L.
,
Zahle
,
F.
,
Anderson
,
B.
,
Barter
,
G.
,
Abbas
,
N.
,
Meng
,
F.
,
Bortolotti
,
P.
,
Skrzypinski
,
W.
,
Scott
,
G.
,
Feil
,
R.
,
Bredmose
,
H.
,
Dykes
,
K.
,
Shields
,
M.
,
Allen
,
C.
, and
Viselli
,
A.
,
2020
, “Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine,” Technical Report, Report No. NREL/TP-5000-75698,
National Renewable Energy Laboratory
,
Golden, CO
.
31.
Haver
,
S.
,
1985
, “
Wave Climate Off Northern Norway
,”
Appl. Ocean. Res.
,
7
(
2
), pp.
85
92
.
32.
DNV
,
2021
, “
Environmental Conditions and Environmental Load
s,” September 2019 ed. DNV. DNV-RP-C205.
33.
Winterstein
,
S.
,
Ude
,
T.
,
Cornell
,
C.
,
Bjerager
,
P.
, and
Haver
,
S.
,
1993
, “
Environmental Parameters for Extreme Response: Inverse FORM With Omission Factors
,”
Proceedings of 6th International Conference on Structural Safety and Reliability
,
Innsbruck, Austria
,
Aug. 9–13
.
34.
Haver
,
S.
, and
Winterstein
,
S.
,
2009
, “
Environmental Contour Lines: A Method for Estimating Long Term Extremes by a Short Term Analysis
,”
Trans. Soc. Naval Architects Marine Eng.
,
116
, pp.
116
127
.
35.
Huseby
,
A. B.
,
Vanem
,
E.
, and
Natvig
,
B.
,
2013
, “
A New Approach to Environmental Contours for Ocean Engineering Applications Based on Direct Monte Carlo Simulations
,”
Ocean. Eng.
,
60
, pp.
124
135
.
36.
Huseby
,
A. B.
,
Vanem
,
E.
, and
Natvig
,
B.
,
2015
, “
Alternative Environmental Contours for Structural Reliability Analysis
,”
Struct. Saf.
,
54
, pp.
32
45
.
37.
Vanem
,
E.
, and
Bitner-Gregersen
,
E. M.
,
2015
, “
Alternative Environmental Contours for Marine Structural Design—A Comparison Study
,”
ASME J. Offshore. Mech. Arct. Eng.
,
137
(
5
), p.
051601
.
38.
Vanem
,
E.
,
2017
, “
A Comparison Study on the Estimation of Extreme Structural Response From Different Environmental Contour Methods
,”
Marine Struct.
,
56
, pp.
137
162
.
39.
Vanem
,
E.
,
Guo
,
B.
,
Ross
,
E.
, and
Jonathan
,
P.
,
2919
, “
Comparing Different Contour Methods With Response-Based Methods for Extreme Ship Response Analysis
,”
Marine Struct.
,
69
, p.
102680
.
40.
Vanem
,
E.
,
2018
, “
3-Dimensional Environmental Contours Based on a Direct Sampling Method for Structural Reliability Analysis of Ships and Offshore Structures
,”
Ships Offshore Struct.
,
14
(
1
), pp.
74
85
.
41.
Der Kiureghian
,
A.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.
42.
Bitner-Gregersen
,
E. M.
, and
Hagen
,
Ø.
,
1990
, “
Uncertainties in Data for the Offshore Environment
,”
Struct. Saf.
,
7
(
1
), pp.
11
34
.
43.
Guedes Soares
,
C.
, and
Henriques
,
A.
,
1996
, “
Statistical Uncertainty in Long-Term Distributions of Significant Wave Height
,”
ASME J. Offshore. Mech. Arct. Eng.
,
118
(
4
), pp.
284
291
.
44.
Vanem
,
E.
,
2015
, “
Uncertainties in Extreme Value Modeling of Wave Data in a Climate Change Perspective
,”
J. Ocean Eng. Marine Energy
,
1
(
4
), pp.
339
359
.
45.
Montes-Iturrizaga
,
R.
, and
Heredia-Zavoni
,
E.
,
2017
, “
Assessment of Uncertainty in Environmental Contours Due to Parametric Uncertainty in Models of the Dependence Structure Between Metocean Variables
,”
Appl. Ocean. Res.
,
64
, pp.
86
104
.
46.
Vanem
,
E.
,
Gramstad
,
O.
, and
Bitner-Gregersen
,
E. M.
,
2019
, “
A Simulation Study on the Uncertainty of Environmental Contours Due to Sampling Variability for Different Estimation Methods
,”
Appl. Ocean. Res.
,
91
, p.
101870
.
47.
Mackay
,
E.
,
de Hauteclocque
,
G.
,
Vanem
,
E.
, and
Jonathan
,
P.
,
2021
, “
The Effect of Serial Correlation in Environmental Conditions on Estimates of Extreme Events
,”
Ocean. Eng.
,
242
, p.
110092
.
48.
Vanem
,
E.
,
2018
, “
A Simple Approach to Account for Seasonality in the Description of Extreme Ocean Environments
,”
Marine Syst. Ocean Technol.
,
13
(
2–4
), pp.
63
73
.
49.
Vanem
,
E.
,
2023
, “
Analysing Multivariate Extreme Conditions Using Environmental Contours and Accounting for Serial Dependence
,”
Renew. Energy
,
202
, pp.
470
482
.
50.
Vanem
,
E.
,
2022
, “
Analyzing Extreme Sea State Conditions by Time-Series Simulation
,”
41st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2022)
,
Hamburg, Germany
,
June 5–10
, American Society of Mechanical Engineers (ASME).
51.
Efron
,
B.
, and
Tibshirani
,
R. J
,
1994
,
An Introduction to the Bootstrap
, 1st ed.,
Chapman & Hall/CRC
,
New York
.
52.
Coles
,
S.
,
2001
,
An Introduction to Statistical Modeling of Extreme Values
,
Springer-Verlag
,
London
.
53.
IEC
,
2019
, “Wind Energy Generation Systems—Part 3-1: Design Requirements for Fixed Offshore Wind Turbines,” Standard IEC 61400-3-1:2019,
International Electrotechnical Commission
,
Geneva
.
54.
Sancetta
,
A.
, and
Satchell
,
S.
,
2004
, “
The Bernstein Copula and Its Applications to Modeling and Approximations of Multivariate Distributions
,”
Econ. Theory
,
20
(
3
), pp.
535
562
.
55.
Joe
,
H.
,
1997
,
Multivariate Models and Multivariate Dependence Concepts
,
Chapman and Hall
,
New York
.
56.
Segers
,
J.
,
Sibuya
,
M.
, and
Tsukahara
,
H.
,
2017
, “
The Empirical Beta Copula
,”
J. Multi. Anal.
,
155
, pp.
35
51
.
57.
Lasserre
,
M.
,
2022
, “
Apprentissages Dans Les Réseaux Bayésiens á Base De Copules Non-paramétriques
,” Ph.D. thesis,
Sorbonne Université
,
Paris
.
58.
Baudin
,
M.
,
Dutfoy
,
A.
,
Iooss
,
B.
, and
Popelin
,
A.-L.
,
2017
, “OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation,”
Handbook of Uncertainty Quantification
,
R.
Ghanem
,
D.
Higdon
, and
H.
Owhadi
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
2001
2038
.
59.
Heredia-Zavoni
,
E.
, and
Montes-Iturrizaga
,
R.
,
2022
, “
Environmental Contours Using Nonparametric Copulas
,”
Ocean. Eng.
,
266
(Part 3), p.
112971
.
60.
Allen
,
C.
,
Viselli
,
A.
,
Dagher
,
H.
,
Goupee
,
A.
,
Gaertner
,
E.
,
Abbas
,
N.
,
Hall
,
M.
, and
Barter
,
G.
,
2020
, “Definition of the UMaine VolturnUS-S Reference Platform Developed for the IAE wind 15-Megawatt Offshore Reference Wind Turbine,
National Renewable Energy Laboratory
,
Golden, CO
, Technical Report, Report No. NREL/TP-5000-76773.
61.
Capaldo
,
M.
,
Guiton
,
M.
,
Huwart
,
G.
,
Julan
,
E.
,
Dimitrov
,
N. K.
,
Kim
,
T.
,
Lovera
,
A.
, and
Peyrard
,
C.
,
2021
, “Design Brief of HIPERWIND Offshore Wind Turbine Cases: Bottom Fixed 10MW and Floating 15MWa, Technical Report, H2020 HIPERWIND Project (Grant No. 101006689).
62.
Kim
,
T.
,
Natarajan
,
A.
,
Lovera
,
A.
,
Julan
,
E.
,
Peyrard
,
C.
,
Capaldo
,
M.
,
Huwart
,
G.
,
Bozonnet
,
P.
, and
Guiton
,
M.
,
2022
, “
A Comprehensive Code-to-Code Comparison Study With the Modified IEA15MW-UMaine Floating Wind Turbine for H2020 HIPERWIND Project
,”
J. Phys.: Conf. Series
,
2265
,No. 4, p.
042006:1
.
63.
Peyrard
,
C.
,
Robaux
,
F.
,
Borras-Nadal
,
A.
,
Joulin
,
P.-A.
,
Mayol
,
L.
,
Eldevik
,
S.
,
Guiton
,
M.
,
Cousin
,
A.
,
Benoit
,
M.
,
Lovera
,
A.
, and
Fereira
,
C.
,
2022
, “Aero-Servo-Hydroelastic Model Uncertainty,” Technical Report D3.3, H2020 HIPERWIND Project (Grant Agreement No 101006689).
You do not currently have access to this content.