Abstract

Chain link fatigue failures in mooring lines have recently aroused the interest of the technical community in developing new design and monitoring methodologies focused on considering the effects of local corrosion. Experimental breakage test results evidenced that the effects of mean tension, pitting corrosion, and surface roughness may influence the fatigue strength of chain links. A recently-developed methodology here denoted as corrosion grade considers the effects of mean tension and local corrosion through a visual assessment of the chain. The present work proposes a parametric correction factor to be used in the current S–N fatigue design methodology for considering local corrosion in studless chains. The parametric model is developed by means of finite element-based modeling of various pit shapes in the chain. The correction factor is fitted as a function of the pit aspect ratio. The proposed correction factor is combined with the corrosion grade methodology to obtain a final formula that considers the mean tension and the local corrosion. Results from both corrosion grade and the proposed correction factor are compared in three corroded experimental test samples. The proposed correction factor is capable of estimating the fatigue life of the corroded components analyzed with conservatism.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Ma
,
K.
,
Luo
,
Y.
,
Kwan
,
C. T.
, and
Wu
,
Y.
,
2019
,
Mooring System Engineering for Offshore Structures
, 1st ed.,
Gulf Professional Publishing
,
Houston, TX
.
2.
Ma
,
K.
,
Duggal
,
A.
,
Smedley
,
P.
,
L’Hostis
,
D.
, and
Shu
,
H.
,
2013
, “
A Historical Review on Integrity Issues of Permanent Mooring Systems
,”
Proceedings of Offshore Technology Conference
, Paper No. OTC-24025-MS.
3.
Fontaine
,
E.
,
Kilner
,
A.
,
Carra
,
C.
, and
Washington
,
D.
,
2014
, “
Industry Survey of Past Failures, Pre-Emptive Replacements and Reported Degradations for Mooring Systems of Floating Productions Units
,”
Proceedings of Offshore Technology Conference
, Paper No. OTC-25273-MS.
4.
Wu
,
J.
,
Yu
,
Y.
,
Cheng
,
S.
,
Li
,
Z.
, and
Yu
,
J.
,
2022
, “
Probabilistic Multilevel Robustness Assessment Framework for a TLP Under Mooring Failure Considering Uncertainties
,”
Reliab. Eng. Syst. Saf.
,
223
(
1
), p.
108458
.
5.
Brake
,
E.
,
Cammen
,
J.
, and
Uittenbogaard
,
R.
,
2007
, “
Calculation Methodology of Out of Plane Bending of Mooring Chains
,”
Proceedings of the ASME 26th International Conference on Ocean, Offshore and Arctic Engineering
,
San Diego, CA
, Paper No. OMAE2007-29178.
6.
Lassen
,
T.
,
Storvoll
,
E.
, and
Bech
,
A.
,
2009
, “
Fatigue Life Prediction of Mooring Chain Subjected to Tension and Out of Plane Bending
,”
Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering
,
Honolulu, HI
, Paper No. OMAE2009-79253.
7.
Vargas
,
P. M.
,
Hsu
,
T. M.
, and
Lee
,
W. K.
,
2004
, “
Stress Concentration Factors for Stud-Less Mooring Chain Links in Fairleads
,”
Proceedings of the ASME 23rd International Conference on Offshore Mechanics and Arctic Engineering, Conference
,
Vancouver, Canada
, Paper No. OMAE2004-51376.
8.
Fernández
,
J.
,
Arredondo
,
A.
,
Storesund
,
W.
, and
González
,
J. J.
,
2019
, “
Influence of the Mean Load on the Fatigue Performance of Mooring Chains
,”
Proceedings of Offshore Technology Conference
,
TX
, Paper No. OTC-29621-MS.
9.
Lone
,
E. N.
,
Sauder
,
T.
,
Larsen
,
K.
, and
Leira
,
B. J.
,
2021
, “
Fatigue Assessment of Mooring Chain Considering the Effects of Mean Load and Corrosion
,”
Proceedings of the ASME 40th International Conference on Ocean, Offshore and Arctic Engineering
,
Virtual, Online
, Paper No. OMAE2021-62775.
10.
Mendoza
,
J.
,
Haagensen
,
P. J.
, and
Köhler
,
J.
,
2022
, “
Analysis of Fatigue Tests Data of Retrieved Mooring Chain Links Subject to Pitting Corrosion
,”
Mar. Struct.
,
81
, p.
103119
.
11.
DNV GL
,
2018
, Offshore Standard—Position Mooring (DNV-OS-E301).
12.
API
,
1995
, “Recommended Practice for the Design and Analysis of Stationkeeping Systems for Floating Structures (API RP 2SK),” 1st ed.
13.
ABS
,
2020
, Guide for Position Mooring Systems (ABS-292).
14.
ISO
,
2013
, Petroleum and Natural Gas Industries—Specific Requirements for Offshore Structures—Part 7: Stationkeeping Systems for Floating Offshore Structures and Mobile Offshore Units (ISO 19901-7).
15.
Gabrielsen
,
Ø
,
Larsen
,
K.
, and
Reinholdtsen
,
S.
,
2017
, “
Fatigue Testing of Used Mooring Chain
,”
Proceedings of the ASME 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
, Paper No. OMAE2017-61382.
16.
Hørte
,
T.
,
Yang
,
L.
, and
Okkenhaug
,
S.
,
2022
, “
Analysis of Chain Fatigue Test Data for New and Used Mooring Chains
,”
Proceedings of the ASME 41st International Conference on Ocean, Offshore and Arctic Engineering
,
Hamburg, Germany
, Paper No. OMAE2022-81465.
17.
Lone
,
E. N.
,
Sauder
,
T.
,
Larsen
,
K.
, and
Leira
,
B. J.
,
2022
, “
Fatigue Reliability of Mooring Chains, Including Mean Load and Corrosion Effects
,”
Ocean Eng.
,
266
(
Part 1
), p.
112621
.
18.
Lone
,
E. N.
,
Sauder
,
T.
,
Larsen
,
K.
, and
Leira
,
B. J.
,
2022
, “
Probabilistic Fatigue Model for Design and Life Extension of Mooring Chains, Including Mean Load and Corrosion Effects
,”
Ocean Eng.
,
245
, p.
110396
.
19.
DNV GL
,
2018
, Offshore Standard—Offshore Mooring Chain (DNV-OS-E302).
20.
ASTM
,
2017
, Standards Practice for Cycle Counting in Fatigue Analysis (ASTM E1049-85).
21.
Fernández
,
J.
,
Storesund
,
W.
, and
Navas
,
J.
,
2014
, “
Fatigue Performance of Grade R4 and R5 Mooring Chains in Seawater
,”
Proceedings of the ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
, Paper No. OMAE2014-23491.
22.
Shoup
,
G. J.
,
Tipton
,
S. M.
, and
Sorem
,
J. R.
, Jr.
,
1992
, “
The Effect of Proof Loading on the Fatigue Behavior of Stud Link Chain
,”
Int. J. Fatigue
,
14
(
1
), pp.
35
40
.
23.
Pacheco
,
P. M. C. L.
,
Kenedi
,
P. P.
,
Jorge
,
J. C. F.
,
Santos
,
H. G.
, and
Savi
,
M. A.
,
2004
, “
Finite Element Residual Stresses Analysis Applied to Offshore Studless Chain Links
,”
ASME 23rd International Conference on Ocean, Offshore and Arctic Engineering
,
Vancouver, Canada
, Paper No. OMAE2004-51508.
24.
Pacheco
,
P. M. C. L.
,
Kenedi
,
P. P.
,
Jorge
,
J. C. F.
, and
Paiva
,
A. M. C.
,
2003
, “
Analysis of the Influence of Mechanical Properties on the Residual Stress in Offshore Chain Links Using the Finite Element Method
,”
ASME 22nd International Conference on Ocean, Offshore and Arctic Engineering
,
Cancun, Mexico
, Paper No. OMAE2003-37205.
25.
Zarandi
,
E. P.
, and
Skallerud
,
B. H.
,
2020
, “
Experimental and Numerical Study of Mooring Chain Residual Stresses and Implications for Fatigue Life
,”
Int. J. Fatigue
,
135
, p.
105530
.
26.
Fatemi
,
A.
, and
Shamsaei
,
N.
,
2011
, “
Multiaxial Fatigue: An Overview and Some Approximation Models for Life Estimation
,”
Int. J. Fatigue
,
33
(
8
), pp.
948
958
.
27.
Castro
,
J. T. P.
, and
Meggiolaro
,
M. A.
,
2016
,
Fatigue Design Techniques: Vol. 1—High-Cycle Fatigue
,
CreateSpace Independent Publishing Platform
,
Scotts Valley, CA
.
28.
Crossland
,
B.
,
1956
, “
Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of and Alloy Steel
,”
Proceedings of International Conference on Fatigue of Metals
, London, UK, Sept. 10–14.
29.
Sines
,
G.
, and
Oghi
,
G.
,
1981
, “
Fatigue Criteria Under Combined Stress or Strains
,”
ASME J. Eng. Mater. Technol.
,
103
(
2
), pp.
82
90
.
30.
Perez
,
I. M.
,
Bastid
,
P.
, and
Venugopal
,
V.
,
2017
, “
Prediction of Residual Stresses in Mooring Chains and Its Impact on Fatigue Life
,”
ASME 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
, Paper No. OMAE2017-61720.
31.
Perez
,
I. M.
,
Constantinescu
,
A.
,
Bastid
,
P.
,
Hui-Yan
,
Z.
, and
Venugopal
,
V.
,
2019
, “
Computational Fatigue Assessment of Mooring Chains Under Tension Loading
,”
Eng. Fail. Anal.
,
106
, p.
104043
.
32.
Perez
,
I. M.
,
Bastid
,
P.
,
Constantinescu
,
A.
, and
Venugopal
,
V.
,
2018
, “
Multiaxial Fatigue Analysis of Mooring Chain Links Under Tension Loading: Influence of Mean Load and Simplified Assessment
,”
ASME 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
, Paper No. OMAE2018-77552.
33.
Angulo
,
A.
,
Edwards
,
G.
,
Soua
,
S.
, and
Gan
,
T.
,
2017
, “Chapter 5: Mooring Integrity Management: Novel Approaches Towards In-Situ Monitoring,”
Structural Health Monitoring—Measurement Methods and Practical Applications
,
M.
Riva-Lopez
,
F.
Wendy Flores
, and
O.
Sergiyenko
, eds.,
InTech
,
London, UK
.
34.
Li
,
H.
, and
Guedes Soares
,
C.
,
2022
, “
Assessment of Failure Rates and Reliability of Offshore Wind Turbines
,”
Reliab. Eng. Syst. Saf.
,
228
(
1
), p.
108777
.
35.
Wang
,
S.
,
Zhang
,
X.
,
Kwan
,
T.
,
Ma
,
K.
,
Li
,
Z.
,
Baker
,
D. A.
,
Izadparast
,
A.
, et al
,
2019
, “
Assessing Fatigue Life of Corroded Mooring Chains Through Advanced Analysis
,”
Offshore Technology Conference
,
Houston, TX
, Paper No. OTC-29449-MS.
36.
Rampi
,
L.
,
Bigonnet
,
A.
,
Le Cunff
,
C.
,
Bourgin
,
F.
, and
Vargas
,
P.
,
2016
, “
Chain Out of Plane (OPB) Fatigue Joint Industry Project (JIP) FEA Results and Multiaxiality Study Results
,”
ASME 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
, Paper No. OMAE2016-54198.
37.
Zarandi
,
E. P.
, and
Skallerud
,
B. H.
,
2020
, “
Cyclic Behavior and Strain Energy-Based Fatigue Damage Analysis of Mooring Chains High Strength Steel
,”
Mar. Struct.
,
70
, p.
102703
.
38.
König
,
J. A.
,
1987
,
Shakedown of Elastic-Plastic Structures
, 1st ed.,
Elsevier
,
New York
.
39.
Kutz
,
M.
,
2005
,
Handbook of Environmental Degradation of Materials
,
William Andrew Publishing
,
Norwich, New York
.
40.
Garbatov
,
Y.
,
Guedes Soares
,
C.
, and
Wang
,
G.
,
2007
, “
Nonlinear Time Dependent Corrosion Wastage of Deck Plates of Ballast and Cargo Tanks of Tankers
,”
ASME J. Offshore Mech. Arct. Eng.
,
129
(
1
), pp.
48
55
.
41.
Guedes Soares
,
C.
,
Garbatov
,
Y.
,
Zayed
,
A.
, and
Wang
,
G.
,
2009
, “
Influence of Environmental Factors on Corrosion of Ship Structures in Marine Atmosphere
,”
Corros. Sci.
,
51
(
9
), pp.
2014
2026
.
42.
Noh
,
M. M.
,
Mozafari
,
F.
,
Khattak
,
M. A.
, and
Tamin
,
M. N.
,
2014
, “
Effect of Pitting Corrosion on Strength of AISI 410 Stainless Steel Compressor Blades
,”
Appl. Mech. Mater.
,
606
, pp.
227
331
.
43.
Jakubowski
,
M.
,
2014
, “
Influence of Pitting Corrosion Fatigue and Corrosion Fatigue of Ship Structures—Part I—Pitting Corrosion of Ship Structures
,”
Pol. Marit. Res.
,
21
(
1
), pp.
62
69
.
44.
Shojai
,
S.
,
Schaumann
,
P.
,
Braun
,
M.
, and
Ehlers
,
S.
,
2022
, “
Influence of Pitting Corrosion on the Fatigue Strength of Offshore Steel Structures Based on 3D Surface Scans
,”
Int. J. Fatigue
,
164
, p.
107128
.
45.
Sharland
,
S. M.
,
Jackson
,
C. P.
, and
Diver
,
A. J.
,
1989
, “
A Finite-Element Model of the Propagation of Corrosion Crevices and Pits
,”
Corros. Sci.
,
29
(
9
), pp.
1149
1166
.
46.
Melchers
,
R. E.
,
2007
, “
Extreme Value Statistics and Long-Term Marine Pitting Corrosion of Steel
,”
Probabilistic Eng. Mech.
,
23
(
4
), pp.
482
488
.
47.
Melchers
,
R. E.
,
2018
, “
A Review of Trends for Corrosion Loss and Pit Depth in Longer-Term Exposures
,”
Corros. Mater. Degrad.
,
1
(
1
), pp.
42
58
.
48.
Melchers
,
R. E.
,
Moan
,
T.
, and
Gao
,
Z.
,
2007
, “
Corrosion of Working Chains Continuously Immersed in Seawater
,”
J. Mar. Sci. Technol.
,
12
(
2
), pp.
102
110
.
49.
SOTRA
,
2018
,
Anchor & Chain Handbook
,
Sotra Gruppen
,
Norway
.
50.
Gemilang
,
G. M.
,
Reed
,
P. A. S.
, and
Sobey
,
A. J.
,
2021
, “
Selection of Appropriate Numerical Models for Modeling the Stresses in Mooring Chains
,”
Mar. Struct.
,
75
, p.
102864
.
51.
Zhang
,
X. Y.
,
Li
,
S. X.
,
Liang
,
R.
, and
Akid
,
R.
,
2013
, “
Effect of Pitting Corrosion on Fatigue Life and Crack Initiation
,”
13th International Conference on Fracture
,
Beijing, China
,
June 16–21
.
52.
Fontaine
,
E.
,
Rosen
,
J.
,
Potts
,
A.
,
Ma
,
K.
, and
Melchers
,
R.
,
2014
, “
SCHORCH JIP—Feedback on MIC and Pitting Corrosion From Field Recovered Mooring Chain Links
,”
Offshore Technology Conference
, Paper No. OTC-25234-MS.
53.
Silva
,
J. E.
,
Garbatov
,
Y.
, and
Guedes Soares
,
C.
,
2012
, “
Ultimate Strength Assessment of Rectangular Steel Plates Subjected to a Random Localized Corrosion Degradation
,”
Eng. Struct.
,
52
, pp.
295
305
.
54.
Nakai
,
T.
,
Matsushita
,
H.
, and
Yamamoto
,
N.
,
2006
, “
Effect of Pitting Corrosion on the Ultimate Strength of Steel Plates Subjected to In-Plane Compression and Bending
,”
J. Mar. Sci. Technol.
,
11
(
1
), pp.
52
64
.
55.
Fatoba
,
O.
, and
Akid
,
R.
,
2022
, “
On the Behaviour of Small Fatigue Cracks Emanating From Corrosion Pits: Part I—The Influence of Mechanical Factors
,”
Theor. Appl. Fract. Mech.
,
117
, p.
103154
.
56.
Li
,
A.
,
Ma
,
H.
, and
Xu
,
S.
,
2022
, “
Three-Dimensional Morphology and Watershed-Algorithm-Based Method for Pitting Corrosion Evaluation
,”
Buildings
,
12
(
11
), p.
1908
.
57.
Bastid
,
P.
, and
Smith
,
S. D.
,
2013
, “
Numerical Analysis of Contact Stresses Between Mooring Chain Links and Potential Consequences for Fatigue Damage
,”
Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
,
Nantes, France
, Paper No. OMAE2013-11360.
58.
Rezende
,
F. A.
,
Simão
,
M. L.
,
Videiro
,
P. M.
, and
Sagrilo
,
L. V. S.
,
2022
, “
The Effect of Pitting Corrosion on Fatigue Performance of Mooring Lines Chain Links
,”
ASME 41st International Conference on Ocean, Offshore and Arctic Engineering
,
Hamburg, Germany
, Paper No. OMAE2022-78408.
59.
Shojai
,
S.
,
Schaumann
,
P.
, and
Brömer
,
T.
,
2022
, “
Probabilistic Modeling of Pitting Corrosion and Its Impact on Stress Concentration in Steel Structures in the Offshore Wind Energy
,”
Mar. Struct.
,
81
, p.
103232
.
60.
Ma
,
K.
,
Gabrielsen
,
Ø
,
Baker
,
D.
,
Li
,
Z.
,
Vargas
,
P.
,
Yao
,
A.
,
Luo
,
M.
, et al
,
2019
, “
Fatigue Tests on Corroded Mooring Chains Retrieved From Various Fields in Offshore West Africa and the North Sea
,”
Proceedings of the ASME 38th International Conference on Ocean, Offshore and Arctic Engineering
,
Glasgow, Scotland, UK
, Paper No. OMAE2019-95618.
You do not currently have access to this content.