Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Numerical modeling of the floating offshore wind turbine (FOWT) dynamics plays a critical role at the design stage of a floating wind project. Still, there exist challenges for verification of efficient engineering models against experimental results. Recently, an experimental campaign was carried out for a 1:96 downscaled model of the OC4-DeepCWind semi-submersible platform with mooring lines made of fiber ropes and chains. Leveraging the results of this campaign, this paper focuses on the development and calibration of a numerical model for the semi-submersible platform with a focus on the dynamic responses under bichromatic waves. In the numerical model, the hydrodynamic loads are modeled based on the potential flow theory with Morison drag. The lumped mass method is applied to model the mooring system. Both free decay tests and bichromatic wave conditions are considered in the model calibration process, and key uncertain parameters (e.g., mooring line length) that affect the response have been identified and discussed. Using the proposed calibration procedure, we establish a reasonably good numerical model for prediction of the platform motion and mooring dynamics. The low-frequency responses of the platform under bichromatic waves are well-captured. These outcomes contribute to the development of efficient numerical FOWT models under experimental uncertainty.

References

1.
IRENA
,
2022
, World Energy Transitions Outlook 2022: 1.5 C Pathway Outlook Report, International Renewable Energy Agency, Abu Dhabi, UAE, http://www.irena.org/publications/2022/Mar/World-Energy-Transitions-Outlook-2022.
2.
Rivera-Arreba
,
I.
,
Bruinsma
,
N.
,
Bachynski
,
E. E.
,
Viré
,
A.
,
Paulsen
,
B. T.
, and
Jacobsen
,
N. G.
,
2018
, “
Modeling of a Semisubmersible Floating Wind Platform in Severe Waves
,”
International Conference on Offshore Mechanics and Arctic Engineering
,
Vol. 51302
,
American Society of Mechanical Engineers
, p.
V009T13A002
.
3.
Du
,
A.
,
2021
, Semi-Submersible, Spar and TLP – How to Select Floating Wind Foundation Types? https://www.empireengineering.co.uk/semi-submersible-spar-and-tlp-floating-wind-foundations/ Website of Empire Engineering. Accessed June 15, 2023.
4.
Elisa Romero
,
C. W.
,
2023
, Floating Wind Logistics and Supply Chain Requirements—The Challenges of Commercialization: https://brightspace.tudelft.nl. Guest Lecture from Heerema Engineering Solutions in the Series AE4W31 Floating Offshore Wind Energy. Accessed June 15, 2023.
5.
Robertson
,
A. N.
,
Wendt
,
F.
,
Jonkman
,
J. M.
,
Popko
,
W.
,
Dagher
,
H.
,
Gueydon
,
S.
, and
Qvist
,
J.
,
2017
, “
OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine
,”
Eng. Proc.
,
137
, pp.
38
57
.
6.
Robertson
,
A.
,
Gueydon
,
S.
,
Bachynski-Polić
,
E.
,
Wang
,
L.
,
Jonkman
,
J.
,
Alarcon Fernandez
,
D.
, and
Amet
,
E.
,
2020
, “
OC6 Phase I: Investigating the Underprediction of Low-Frequency Hydrodynamic Loads and Responses of a Floating Wind Turbine
,”
J. Phys. Conf. Ser
,
1618
(
Future Wind
), p.
032033
. DOI: 10.1088/1742-6596/1618/3/032033
7.
Tom
,
N.
,
Robertson
,
A.
,
Jonkman
,
J.
,
Wendt
,
F.
, and
Böhm
,
M.
,
2019
, “
Bichromatic Wave Selection for Validation of the Difference-Frequency Transfer Function for the Oc6 Validation Campaign
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Vol.
59353
,
American Society of Mechanical Engineers
, p.
V001T01A022
.
8.
Wang
,
L.
,
Robertson
,
A.
,
Jonkman
,
J.
,
Yu
,
Y.-H.
,
Koop
,
A.
,
Borràs Nadal
,
A.
,
Li
,
H.
,
Shi
,
W.
,
Pinguet
,
R.
, and
Zhou
,
Y.
, et al.,
2021
, “
Investigation of Nonlinear Difference-Frequency Wave Excitation on a Semisubmersible Offshore-Wind Platform With Bichromatic-Wave CFD Simulations
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Vol.
84768
,
American Society of Mechanical Engineers
, p.
V001T01A009
.
9.
Wang
,
Y.
, and
Chen
,
H.-C.
,
2023
, “
Verification and Validation of Computational Fluid Dynamic Simulations of a FOWT Semi-submersible Under Bichromatic and Random Waves
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
6
), p.
062001
.
10.
Metsch
,
Y.
,
2023
, “
Experimental Low Frequency Mooring Analysis of a Floating Offshore Wind Turbine
,” M.S. thesis,
Delft University of Technology
,
Delft, The Netherlands
.
11.
Niosi
,
F.
,
Dell’Edera
,
O.
,
Sirigu
,
M.
,
Ghigo
,
A.
, and
Bracco
,
G.
,
2023
, “
A Comparison Between Different Numerical Models and Experimental Tests for the Study of Floating Offshore Wind Turbines
,”
The 33rd International Ocean and Polar Engineering Conference
,
Ottawa, Canada
,
June 2023
.
12.
Orcina
,
2023
, OrcaFlex Documentation. https://www.orcina.com/webhelp/OrcaFlex/Default.htm. Retrieved on November 19, 2023.
13.
Metsch
,
Y.
, and
Schreier
,
S.
,
2023
, “
Data Underlying the MSc Thesis: Experimental Low Frequency Mooring Analysis of a Floating Offshore Wind Turbine
.
14.
Cummins
,
W.
,
1962
, “
The Impulse Response Function and Ship Motions
,”
Symposium on the Ship Theory
,
Hamburg, Germany
,
January 1962
.
15.
Ogilvie
,
T.
,
1964
,
Toward the Understanding and Prediction of Ship Motions
,
Technische Hogeschool Delft
,
Delft, The Netherlands
.
16.
Zhang
,
L.
,
Shi
,
W.
,
Karimirad
,
M.
,
Michailides
,
C.
, and
Jiang
,
Z.
,
2020
, “
Second-Order Hydrodynamic Effects on the Response of Three Semisubmersible Floating Offshore Wind Turbines
,”
Ocean Eng.
,
207
, p.
107371
.
17.
Journée
,
J. M. J.
, and
Massie
,
W.
,
2001
,
Offshore Hydromechanics
, 1st ed.,
Delft University of Technology
,
Delft, The Netherlands
.
18.
Newman
,
J. N.
,
2018
,
Marine Hydrodynamics
, 40th Anniversary Edition ed.,
The MIT Press
,
Cambridge, MA
.
19.
Morison
,
J.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Pet. Technol.
,
2
(
05
), pp.
149
154
.
20.
Van den Boom
,
H.
,
1985
, “
Dynamic Behaviour of Mooring Lines
,”
4th International Conference on Behaviour of Offshore Structures
,
Delft, the Netherlands
,
July 1985
.
21.
Jain
,
A.
,
Goupee
,
A. J.
,
Robertson
,
A. N.
,
Kimball
,
R. W.
,
Jonkman
,
J. M.
, and
Swift
,
A. H.
,
2012
, “
Fast Code Verification of Scaling Laws for Deepcwind Floating Wind System
,”
ISOPE International Ocean and Polar Engineering Conference
,
Rhodes, Greece
,
June 17–22
.
22.
Orcina
,
2023
, L02 OC4 Semi-Sub. https://www.orcina.com/resources/examples/?key=l, Accessed July 31, 2023.
23.
Orcina
,
2023
, OrcaWave Documentation. https://www.orcina.com/webhelp/OrcaWave/Default.htm, Accessed November 19, 2023.
24.
Matha
,
D.
,
Cruz
,
J.
,
Masciola
,
M.
,
Bachynski
,
E. E.
,
Atcheson
,
M.
,
Goupee
,
A. J.
,
Gueydon
,
S. M.
, and
Robertson
,
A. N.
,
2016
, “Modelling of Floating Offshore Wind Technologies,”
Floating Offshore Wind Energy: The Next Generation of Wind Energy
,
Springer Cham
,
Switzerland
, pp.
133
240
.
25.
Newman
,
J. N.
,
1992
, “
Panel Methods in Marine Hydrodynamics
,”
11th Australasian Fluid Mechanics Conference
,
Hobart, Australia
,
December 1992
.
26.
Lee
,
C.-H.
,
Newman
,
J.
, and
Zhu
,
X.
,
1996
, “
An Extended Boundary Integral Equation Method for the Removal of Irregular Frequency Effects
,”
Int. J. Numer. Methods Fluids
,
23
(
7
), pp.
637
660
.
27.
Lee
,
C.H.
,
1988
,
Numerical Methods for Boundary Integral Equations in Wave Body Interactions
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
28.
Kvittem
,
M. I.
,
Berthelsen
,
P. A.
,
Eliassen
,
L.
, and
Thys
,
M.
,
2018
, “
Calibration of Hydrodynamic Coefficients for a Semi-Submersible 10 MW Wind Turbine
,”
International Conference on Offshore Mechanics and Arctic Engineering
, Vol.
51319
,
American Society of Mechanical Engineers
, p.
V010T09A080
.
29.
Liao
,
Y.
, and
Wells
,
V.
,
2011
, “
Modal Parameter Identification Using the Log Decrement Method and Band-Pass Filters
,”
J. Sound Vib.
,
330
(
21
), pp.
5014
5023
.
You do not currently have access to this content.