Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The characteristics of flow-induced oscillation (FIO) of multiple tandem cylinders with passive turbulence control (PTC) change due to interference between PTC cylinders. Identifying positive and negative interferences is vital for designing marine structures involving PTC cylinders on elastic supports. Experiments on a single PTC cylinder, two PTC cylinders and three PTC cylinders in tandem were conducted to study the interferences due to placing an identical oscillating PTC cylinder upstream, downstream, and both upstream and downstream. Critical parameters (damping, stiffness) and Reynolds number (Re) are varied in the tests. The onset inflow velocity of oscillation is reduced and back-to-back vortex-induced vibration (VIV) and galloping is achieved, when placing interference cylinders in the vicinity of the basic oscillator. The interference due to the downstream cylinder enhances FIO of the basic oscillator. In the VIV region, one interference downstream cylinder is more effective than two interference downstream cylinders. In the galloping region, the enhancement improves for two interference cylinders for lower stiffness and damping ratios. The interference upstream cylinder tends to suppress FIO of the basic oscillator for higher stiffness. The suppression of one upstream cylinder is more vigorous than that of two upstream cylinders in the VIV region, and the opposite is true in the galloping region. When two interference cylinders are placed both downstream and upstream of the basic oscillator, its FIO is enhanced for the lower stiffness whilst it is suppressed for the higher stiffness.

References

1.
Liu
,
R.
,
Wang
,
H.
,
Sun
,
L.
,
Li
,
X.
, and
He
,
L.
,
2024
, “
A Lever-Type Piezoelectric Wave Energy Harvester Based on Magnetic Coupling and Inertial Vibration
,”
Sustainable Energy Technol. Assess.
,
62
, p.
103605
.
2.
Wang
,
S.
,
He
,
L.
,
Wang
,
H.
,
Li
,
X.
,
Sun
,
B.
, and
Lin
,
J.
,
2024
, “
Energy Harvesting From Water Impact Using Piezoelectric Energy Harvester
,”
Rev. Sci. Instrum.
,
95
(
2
), p.
021501
.
3.
He
,
L.
,
Liu
,
R.
,
Liu
,
X.
,
Zheng
,
X.
,
Zhang
,
L.
, and
Lin
,
J.
,
2024
, “
A Piezoelectric-Electromagnetic Hybrid Energy Harvester for Low-Frequency Wave Motion and Self-Sensing Wave Environment Monitoring
,”
Energy Convers. Manag.
,
300
, p.
117920
.
4.
Bearman
,
P. W.
,
2011
, “
Circular Cylinder Wakes and Vortex-Induced Vibrations
,”
J. Fluid Struct.
,
27
(
5
), pp.
648
658
.
5.
Parkinson
,
G.
,
1989
, “
Phenomena and Modelling of Flow-Induced Vibrations of Bluff Bodies
,”
Prog. Aerosp. Sci.
,
26
(
2
), pp.
169
224
.
6.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
, 2nd ed,
Van Nostrand Reinhold
,
New York
.
7.
Wang
,
J.
,
Zhang
,
Y.
,
Hu
,
G.
, and
Zhang
,
W.
,
2023
, “
Wake-Induced Vibration and Heat Transfer Characteristics of Three Tandem Semi-Circular Cylinders
,”
J. Fluid Struct.
,
123
, p.
104004
.
8.
Wang
,
J.
,
Li
,
S.
,
Yurchenko
,
D.
,
Zhu
,
H.
, and
Bose
,
C.
,
2024
, “
Effect of a Fixed Downstream Cylinder on the Flow-Induced Vibration of an Elastically Supported Primary Cylinder
,”
Phys. Fluids
,
36
(
6
), p.
063602
.
9.
Kim
,
E. S.
,
Sun
,
H.
,
Park
,
H.
,
Shin
,
S. C.
,
Chae
,
E. J.
,
Ouderkirk
,
R.
, and
Bernitsas
,
M. M.
,
2021
, “
Development of an Alternating Lift Converter Utilizing Flow-Induced Oscillations to Harness Horizontal Hydrokinetic Energy
,”
Renewable Sustainable Energy Rev.
,
145
(
4
), p.
111094
.
10.
Wang
,
J. S.
,
Fan
,
D. X.
, and
Lin
,
K.
,
2020
, “
A Review on Flow-Induced Vibration of Offshore Circular Cylinders
,”
J. Hydrodyn.
,
32
(
3
), pp.
415
440
.
11.
Bokaian
,
A.
, and
Geoola
,
F.
,
1984
, “
Wake-Induced Galloping of two Interfering Circular Cylinders
,”
J. Fluid Mech.
,
146
, pp.
383
415
.
12.
Assi
,
G. R. S.
,
Meneghini
,
J. R.
,
Aranha
,
J. A. P.
,
Bearman
,
P. W.
, and
Casaprima
,
E.
,
2006
, “
Experimental Investigation of Flow-Induced Vibration Interference Between two Circular Cylinders
,”
J. Fluid Struct.
,
22
(
6–7
), pp.
819
827
.
13.
Chen
,
Z.
,
Alam
,
M. M.
,
Qin
,
B.
, and
Zhou
,
Y.
,
2020
, “
Energy Harvesting From and Vibration Response of Different Diameter Cylinders
,”
Appl. Energy
,
278
, p.
115737
.
14.
Qin
,
B.
,
Alam
,
M. M.
, and
Zhou
,
Y.
,
2019
, “
Free Vibrations of Two Tandem Elastically Mounted Cylinders in Crossflow
,”
J. Fluid Mech.
,
861
, pp.
349
381
.
15.
Shaaban
,
M.
, and
Mohany
,
A.
,
2018
, “
Flow-Induced Vibration of Three Unevenly Spaced In-Line Cylinders in Cross-Flow
,”
J. Fluid Struct.
,
76
, pp.
367
383
.
16.
Wang
,
E.
,
Xua
,
W.
,
Yua
,
Y.
,
Zhou
,
L.
, and
Incecik
,
A.
,
2019
, “
Flow-Induced Vibrations of Three and Four Long Flexible Cylinders in Tandem Arrangement: An Experimental Study
,”
Ocean Eng.
,
178
, pp.
170
184
.
17.
Chen
,
W. L.
,
Ji
,
C. N.
,
Williams
,
J.
,
Xu
,
D.
,
Yang
,
L. H.
, and
Cui
,
Y. T.
,
2018
, “
Vortex-Induced Vibrations of Three Tandem Cylinders in Laminar Cross-Flow: Vibration Response and Galloping Mechanism
,”
J. Fluid Struct.
,
78
, pp.
215
238
.
18.
Chang
,
C. C. J.
,
Kumar
,
R. A.
, and
Bernitsas
,
M. M.
,
2011
, “
VIV and Galloping of Single Circular Cylinder With Surface Roughness at 3.0 × 104Re ≤ 1.2 × 105
,”
Ocean Eng.
,
38
(
16
), pp.
1713
1732
.
19.
Park
,
H.
,
Kumar
,
R. A.
, and
Bernitsas
,
M. M.
,
2013
, “
Enhancement of Flow-Induced Motion of Rigid Circular Cylinder on Springs by Localized Surface Roughness at 3 × 104Re ≤ 1.2 × 105
,”
Ocean Eng.
,
72
, pp.
403
415
.
20.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.
21.
Sun
,
H.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2016
, “
Effect of Mass-Ratio, Damping, and Stiffness on Optimal Hydrokinetic Energy Conversion of a Single, Rough Cylinder in Flow Induced Motions
,”
Renewable Energy
,
99
, pp.
936
959
.
22.
Kim
,
E. S.
,
Bernitsas
,
M. M.
, and
Kumar
,
R. A.
,
2013
, “
Multicylinder Flow-Induced Motions: Enhancement by Passive Turbulence Control at 28,000 < Re <120,000
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
2
), p.
021802
.
23.
Sun
,
H.
,
Ma
,
C.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2017
, “
Hydrokinetic Energy Conversion by Two Rough Tandem-Cylinders in Flow Induced Motions: Effect of Spacing and Stiffness
,”
Renewable Energy
,
107
, pp.
61
80
.
24.
Li
,
H. J.
,
Bernitsas
,
C. C.
,
Congpuong
,
N.
,
Bernitsas
,
M. M.
, and
Sun
,
H.
,
2024
, “
Experimental Investigation on Synergistic Flow-Induced Oscillation of Three Rough Tandem-Cylinders in Hydrokinetic Energy Conversion
,”
Appl. Energy
,
359
, p.
122587
.
25.
Yuan
,
W.
,
Sun
,
H.
,
Li
,
H.
, and
Bernitsas
,
M. M.
,
2020
, “
Flow-Induced Oscillation Patterns for Two Tandem Cylinders With Turbulence Stimulation and Variable Stiffness and Damping
,”
Ocean Eng.
,
218
, p.
108237
.
26.
Sun
,
H.
,
Li
,
H. J.
,
Yang
,
N. K.
,
Hou
,
G. L.
, and
Bernitsas
,
M. M.
,
2023
, “
Experimental and Numerical Study of the Shielding Effect of Two Tandem Rough Cylinders in Flow-Induce Oscillation
,”
Mar. Struct.
,
89
, p.
103374
.
27.
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2016
, “
Performance Prediction of Horizontal Hydrokinetic Energy Converter Using Multiple-Cylinder Synergy in Flow Induced Motion
,”
Appl. Energy
,
170
, pp.
92
100
.
28.
Bernitsas
,
M. M.
,
2016
,
Harvesting Energy by Flow Included Motions
,
Springer International Publishing
,
Cham
, pp.
1163
1244
.
29.
Sun
,
H.
,
Kim
,
E. S.
,
Bernitsas
,
M. P.
, and
Bernitsas
,
M. M.
,
2015
, “
Virtual Spring-Damping System for Flow-Induced Motion Experiments
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
6
), p.
061801
.
30.
Chang
,
C. C.
,
2010
,
Hydrokinetic Energy Harnessing by Enhancement of Flow Induced Motion Using Passive Turbulence Control
,
University of Michigan
,
Ann Arbor, MI
.
31.
Park
,
H.
,
Kumar
,
R. A.
, and
Bernitsas
,
M. M.
,
2016
, “
Suppression of Vortex-Induced Vibrations of Rigid Circular Cylinder on Springs by Localized Surface Roughness at 3 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
111
, pp.
218
233
.
32.
Ding
,
W.
,
Sun
,
H.
,
Xu
,
W.
, and
Bernitsas
,
M. M.
,
2019
, “
Numerical Investigation on Interactive FIO of Two-Tandem Cylinders for Hydrokinetic Energy Harnessing
,”
Ocean Eng.
,
187
, p.
106215
.
You do not currently have access to this content.