Corrosion of reinforced concrete is a chronic infrastructure problem, particularly in areas with deicing salt and marine exposure. To maintain structural integrity, a testing method is needed to identify areas of corroding reinforcement. For purposes of rehabilitation, the method must also be able to evaluate the degree, rate, and location of damage. Toward the development of a wireless embedded sensor system to monitor and assess corrosion damage in reinforced concrete, reinforced mortar specimens were manufactured with seeded defects to simulate corrosion damage. Taking advantage of waveguide effects of the reinforcing bars, these specimens were then tested using an ultrasonic approach. Using the same ultrasonic approach, specimens without seeded defects were also monitored during accelerated corrosion tests. Both the ultrasonic sending and the receiving transducers were mounted on the steel rebar. Advantage was taken of the lower frequency (<250kHz) fundamental flexural propagation mode because of its relatively large displacements at the interface between the reinforcing steel and the surrounding mortar. Waveform energy (indicative of attenuation) is presented and discussed in terms of corrosion damage. Current results indicate that the loss of bond strength between the reinforcing steel and the surrounding concrete can be detected and evaluated.

1.
Uhlig’s Corrosion Handbook
, 2000, edited by
R. W.
Revie
, 2nd ed.,
Wiley
, NY.
2.
Aktan
,
A. E.
, and
Grimmelsman
,
K. A.
, 1999 “
The Role of NDE in Bridge Health-Monitoring
,”
Proc. SPIE
0277-786X,
3587
, pp.
2
15
.
3.
Fuhr
,
T. P.
,
Ambrose
,
T. P.
,
Huston
,
D. R.
, and
McPadden
,
A. J.
, 1995, “
Fiber Optic Corrosion Sensing for Bridges and Roadway Surfaces
,”
Proceedings of the Smart Systems for Bridges, Structures, and Highways Conference
, Vol.
2446
, San Diego, pp.
2
8
.
4.
Green
,
R. E.
Jr.
, 1988, “
Current and Emerging Techniques for the Nondestructive Evaluation of Civil Structures
,”
Proceedings of the International Workshop on Nondestructive Evaluation for Performance of Civil Structures
, Los Angeles, pp.
81
99
.
5.
Khan
,
M. S.
,
Washer
,
G. A.
, and
Chase
,
S. B.
, 1998, “
Evaluation of Dual-Band Infrared Thermography System for Bridge Deck Delamination Surveys
,”
Proc. SPIE
0277-786X,
3400
, pp.
224
235
.
6.
del Grande
,
N. K.
and
Durbin
,
P. F.
, 1999, “
Delamination Detection in Reinforced Concrete Using Thermal Inertia
.”
Proc. SPIE
0277-786X,
3587
, pp.
186
-
197
.
7.
Kesner
,
K.
,
Sansalone
,
M.
, and
Poston
,
R. W.
, 1998, “
Detection of Distributed Damage in Concrete Using Transient Stress Waves
,”
Proc. SPIE
0277-786X,
3400
, pp.
386
397
.
8.
Krieger
,
J.
,
Krause
,
M.
, and
Wiggenhauser
,
H.
, 1998 “
Tests and Assessments of NDT Methods for Concrete Bridges
,”
Proc. SPIE
0277-786X,
3400
, pp.
258
269
.
9.
Vurpillot
,
S.
,
Inaudi
,
D.
, and
Ducret
,
J.-M.
, 1996, “
Bridge Monitoring by Fiber Optic Deformation Sensors: Design, Emplacement and Results
,”
Proc. SPIE
0277-786X,
2719
, pp.
141
149
.
10.
Griffiths
,
R. W.
, 1998, “
Recent and Current Developments in Distributed Fiber Optic Sensing for Structural Monitoring
,”
Proc. SPIE
0277-786X,
985
, pp.
69
76
.
11.
Huston
,
D. R.
,
Fuhr
,
P. L
,
Beliveau
,
J.-G.
, and
Spillman
,
W. B.
, 2001, “
Structure Member Vibration Measurement Using a Fiber Optic Sensor
,”
J. Sound Vib.
0022-460X,
149
(
2
) pp.
348
353
.
12.
Caussignac
,
J. M.
,
Chabert
,
A.
,
Morel
,
G.
,
Rogez
,
P.
, and
Seantier
,
J.
, 1992, “
Bearing of a Bridge Fitted with Load Measuring Devices Based on an Optical Fiber Technology
,”
Proceeding of the 1st European Conference on Smart Structures and Materials
, Glasgow, pp.
147
150
.
13.
Kuchma
,
D. A.
,
Bernhard
,
J.
, and
Reis
,
H.
, 2002, ”
A Wireless Embedded Sensor System to Monitor and Assess Corrosion in the Tendons of Prestressed Concrete Girders
,”
Proceeding of the US-Korea Workshop on Smart Structural Systems
, Busan, Korea, August 23–24, pp.
273
282
.
14.
Pavlakovic
,
B.
, and
Lowe
,
M.
, 1998 “
A General Purpose Approach to Calculating the Longitudinal and Flexural Modes of Multi-layered, Embedded, Transversely Isotropic Cylinders
,”
Review of Progress in Quantitative Nondestructive Evaluation
, Vol.
18A
, edited by
D. O.
Thomson
and
D. E.
Chimenti
,
Plenum Press
, NY, pp.
1557
1564
.
15.
Al-Sulaimani
,
G. J.
,
Kaleemullah
,
M.
,
Busanbul
,
I. A.
, and
Rasheeduzzafar
,
F.
, 1990, “
Influence of Corrosion and Cracking on Bond Behavior and Strength of Reinforced Concrete Members
,”
ACI Struct. J.
0889-3241
87
(
2
), pp.
220
231
.
16.
Almuysallam
,
A. A.
,
Al-Gahtani
,
A. S.
,
Aziz
,
A. R.
,
Dakhil
,
F. H.
, and
Rasheeduzzafar
,
F.
, 1996, “
Effect of Reinforcement Corrosion on Flexural Behavior of Concrete Slabs
,”
J. Mater. Civ. Eng.
0899-1561,
8
(
3
), pp.
123
127
.
17.
Dagher
,
H. J.
and
Kulendran
,
S.
, 1992, “
Finite Element Modelling of Corrosion Damage in Concrete Structures
,”
ACI Struct. J.
0889-3241
89
(
6
), pp.
699
708
.
18.
Siwiec
,
P.
,
Moczko
,
A. T.
, and
Stroeven
,
P.
, 1994,
Study of Steel Bar Corrosion by Experimental and Analytical Simulation, DIANA Computational Mechanics ’94, G.M.A
, edited by
Kusters
and
M. A. N.
Hendriks
,
Kluwer Academic Publishers
, The Netherlands, pp
383
394
.
19.
Broomfield
,
J. P.
, 1997,
Corrosion of Steel in Concrete: Understanding, Investigation, and Repair
,
E & FN Spon
, London.
20.
Liu
,
Y.
, 1996, “
Modeling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, 1996.
21.
Bentur
,
A.
,
Diamond
,
S.
, and
Berke
,
N. S.
1997,
Steel Corrosion in Concrete: Fundamentals and Civil Engineering Practice
,
E & FN Spon
, London.
22.
Aquino
,
W.
, 2002 “
Long-Term Performance of Seismically Rehabilitated Corrosion-Damaged Columns
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana.
23.
Cabrera
,
J. G.
, 1996, “
Deterioration of Concrete Due to Reinforcement Steel Corrosion
,”
Cem. Concr. Compos.
0958-9465,
18
, pp.
47
59
.
24.
Amleh
,
L.
, and
Mirza
,
S.
, 1999, “
Corrosion Influence on Bond between Steel and Concrete
,”
ACI Struct. J.
0889-3241,
96
(
3
), pp.
415
423
.
25.
Pochhammer
,
L.
, 1876, “
Uber die Fortpflanzungsgeschwindigkeiten Kleiner Schwingungen in Einem Unbegrenzten Isotropen Kreiszylinder
,”
J. Reine Angew. Math.
0075-4102
81
, pp
324
336
.
26.
Chree
,
C.
, 1889, “
The Equations of an Isotropic Elastic Solid in Polar and Cylindrical Co-ords., their Solutions and Applications
,”
Trans. Cambridge Philos. Soc.
0371-5779,
14
, pp.
250
369
.
27.
Bancroft
,
D.
, “
The Velocity of Longitudinal Waves in Cylindrical Bars
,” 1941,
Phys. Rev.
0031-899X,
59
, pp.
588
593
.
28.
Rose
,
J. L.
, 1999
Ultrasonic Waves in Solid Media
,
University Press
, Cambridge; UK.
29.
Beard
,
M. D.
, 2002
Guided Wave Inspection of Embedded Cylindrical Structures
,” Ph.D. thesis, University of London.
30.
Pavlakovic
,
B.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
, 1999, “
The Inspection of Tendons in Post-Tensioned Concrete Using Guided Ultrasonic Waves
,”
Insight
1060-135X,
41
(
7
), pp.
446
452
.
31.
Na
,
W.
,
Kundu
,
T.
, and
Ehsani
,
M. R.
, 2002, “
Ultrasonic Guided Waves for Steel Bar Concrete Interface Testing
,”
Mater. Eval.
0025-5327,
60
(
3
), pp.
437
444
.
32.
Na
,
W.
,
Kundu
,
T.
, and
Ehsani
,
M. R.
, 2003, “
A Comparison of Steel∕Concrete and Glass Fiber Reinforced Polymers∕Concrete Interface Testing by Guided Waves
,”
Mater. Eval.
0025-5327,
61
(
2
), pp.
155
161
.
33.
Lowe
,
M. J. S.
, 1995, “
Matrix Techniques for Modeling Ultrasonic Waves in Multilayered Media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010
42
(
4
), pp.
525
542
.
34.
Nguyen
,
T. H.
,
Smart
,
C. D.
, and
Lynnworth
,
L. C.
, 2004, “
Transverse Shear to Torsion Mode Converter and Applications
,”
Mater. Eval.
0025-5327,
62
(
6
), pp.
690
698
.
35.
Vary
,
A.
, 1988, “
The Acousto-Ultrasonic Approach
,”
Acousto-Ultrasonics: Theory and Application
, edited by
J. C.
Duke
, Jr.
,
Plenum Press
, NY.
36.
Wu
,
C. S.
, and
Chang
,
F. K.
, 2001, “
A Built-in Active Sensing Diagnostic System for Civil Infrastructure Systems
,”
Proceedings of SPIE: Smart Structures and Materials 2001–Smart Systems for Bridges, Structures, and Highways
, Newport Beach,
4330
pp.
27
35
.
37.
Wang
,
C. S.
,
Wu
,
F.
, and
Chang
,
F. K.
, 2001, “
Structural Health Monitoring from Fiber-Reinforced Composites to Steel-Reinforced Concrete
,”
Smart Mater. Struct.
0964-1726,
10
(
3
), pp
548
552
.
38.
Pavlakovic
,
B.
, and
Lowe
,
M. J. S.
, 2001,
Disperse User’s Manual Version 2.0.11
,
Imperial College, University of London
.
39.
Mangat
,
P. S.
, and
Elgarf
,
M. S.
, 1999, “
Flexural Strength of Concrete Beams with Corroding Reinforcement
,”
ACI Struct. J.
0889-3241,
96
(
1
), pp.
149
158
.
40.
Stanish
,
K.
,
Hooton
,
R. D.
, and
Pantazopoulou
,
S. J.
, 1999, “
Corrosion Effects on Bond Strength in Reinforced Concrete
,”
ACI Struct. J.
0889-3241,
96
(
6
), pp.
915
921
.
41.
Auyeung
,
Y.
,
Balaguru
,
P.
, and
Chung
,
L.
, 2000, “
Bond Behavior of Corroded Reinforcement Bars
,”
ACI Mater. J.
0889-325X,
97
(
2
) pp.
214
220
.
42.
Lee
,
C.
,
Bonacci
,
J. F.
,
Thomas
,
M. D. A.
,
Maalej
,
M.
,
Khajehpour
,
S.
,
Hearn
,
N.
,
Pantazopoulou
,
S.
, and
Sheikh
,
S.
, 2000, “
Accelerated Corrosion and Repair of Reinforced Concrete Columns using Carbon Fibre Reinforced Polymer Sheets
,”
Can. J. Civ. Eng.
0315-1468
27
, pp.
941
948
.
43.
Soudki
,
K. A.
and
Sherwood
,
T. G.
, 2000, “
Behaviour of Reinforced Concrete Beams Strengthened with Carbon Fibre Reinforced Polymer Laminates subjected to Corrosion Damage
,”
Can. J. Civ. Eng.
0315-1468,
27
, pp.
1005
1010
.
44.
Corrosion of Steel in Concrete: Report of the Technical Committee 60-CSC RILEM
, 1988, edited by
P.
Schiessl
,
Chapman and Hall
, NY.
You do not currently have access to this content.