Abstract

Applications requiring the containment and transportation of hydrogen gas at pressures greater than 70MPa are anticipated in the evolving hydrogen economy infrastructure. Since hydrogen is known to alter the mechanical properties of materials, data are needed to guide the selection of materials for structural components. The objective of this study is to characterize the role of yield strength, microstructural orientation, and small concentrations of ferrite on hydrogen-assisted fracture in two austenitic stainless steels: 21Cr–6Ni–9Mn (21-6-9) and 22Cr–13Ni–5Mn (22-13-5). The testing methodology involves exposure of tensile specimens to high-pressure hydrogen gas at elevated temperature in order to precharge the specimens with hydrogen, and subsequently testing the specimens in laboratory air to measure strength and ductility. In all cases, the alloys remain ductile despite precharging to hydrogen concentrations of 1at.%, as demonstrated by reduction in area values between 30% and 60% and fracture modes dominated by microvoid processes. Low concentrations of ferrite and moderate increases in yield strength do not exacerbate hydrogen-assisted fracture in 21-6-9 and 22-13-5, respectively. Microstructural orientation has a pronounced effect on ductility in 22-13-5 due to the presence of aligned second-phase particles.

References

1.
West
,
A. J.
, and
Louthan
,
M. R.
, 1982, “
Hydrogen Effects on the Tensile Properties of 21-6-9 Stainless Steel
,”
Metall. Trans. A
0360-2133,
13A
, pp.
2049
2058
.
2.
Odegard
,
B. C.
,
Brooks
,
J. A.
, and
West
,
A. J.
, 1975, “
The Effect of Hydrogen on Mechanical Behavior of Nitrogen-Strengthened Stainless Steel
,” Proceedings of an International Conference on Effect of Hydrogen on Behavior of Materials,
A. W.
Thompson
and
I. M.
Bernstein
eds.,
The Metallurgical Society of AIME
,
Moran, WY
, pp.
116
125
.
3.
Caskey
,
G. R.
, 1983,
Hydrogen Compatibility Handbook for Stainless Steels (DP-1643).
,
EI du Pont Nemours, Savannah River Laboratory
,
Aiken
,
SC
.
4.
Zhang
,
L.
,
Wen
,
M.
,
Imade
,
M.
,
Fukuyama
,
S.
, and
Yokogawa
,
K.
, 2006, “
Effect of Nickel Equivalent on Hydrogen Environment Embrittlement of Austenitic Stainless Steels at Low Temperatures
,”
Fracture of Nano and Engineering Materials and Structures, Proceedings of the 16th European Conference of Fracture
,
E. E.
Gdoutos
, ed.,
Springer, Alexandroupolis
,
Greece
.
5.
Louthan
,
M. R.
,
Caskey
,
G. R.
,
Donovan
,
J. A.
, and
Rawl
,
D. E.
, 1972, “
Hydrogen Embrittlement of Metals
,”
Mater. Sci. Eng.
0025-5416,
10
, pp.
357
368
.
6.
Perra
,
M. W.
, 1981, “
Sustained-Load Cracking of Austenitic Steels in Gaseous Hydrogen
,”
Environmental Degradation of Engineering Materials in Hydrogen
,
M. R.
Louthan
,
R. P.
McNitt
, and,
R. D.
Sisson
, eds.,
Laboratory for the Study of Environmental Degradation of Engineering Materials
,
Virginia Polytechnic Institute
,
Blacksburg, VA
, pp.
321
333
.
7.
Fidelle
,
J. P.
, 1974, “
Closing Commentary—IHE-HEE: Are They the Same?
,”
Hydrogen Embrittlement Testing
,
American Society for Testing and Materials
Philadelphia, PA
, pp.
267
272
, ASTM Paper No. STP 543.
8.
Nelson
,
H. G.
, 1974, “
Closing Commentary—IHE-HEE: Are They the Same?
,”
Hydrogen Embrittlement Testing
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
273
274
, ASTM Paper No. STP 543.
9.
Baskes
,
M.
, DIFFUSE-83 (SAND83–8231). Sandia National Laboratories, Livermore, CA.
10.
Hardwick
,
M. F.
, and
Robinson
,
S. L.
, DIFFUSE II, a hydrogen isotope diffusion and trapping simulation program upgrade (SAND99–8202), Sandia National Laboratories, Livermore, CA.
11.
San Marchi
,
C.
,
Somerday
,
B. P.
, and
Robinson
,
S. L.
, 2007, “
Permeability, Solubility and Diffusivity of Hydrogen Isotopes in Stainless Steels at High Gas Pressure
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
100
116
.
12.
Ma
,
L.
,
Liang
,
G.
,
Tan
,
J.
,
Rong
,
L.
, and
Li
,
Y.
, 1999, “
Effect of Hydrogen on Cryogenic Mechanical Properties of Cr-Ni-Mn-N Austenitic Steels
,”
J. Mater. Sci. Technol.
0861-9786,
15
, pp.
67
70
.
13.
Vodarek
,
V.
, 1991, “
Morphology and Orientation Relationship of Z-Phase in Austenite
,”
Scr. Metall. Mater.
0956-716X,
25
, pp.
549
552
.
14.
Caskey
,
G. R.
, 1981, “
Hydrogen Damage in Stainless Steel
,”
Environmental Degradation of Engineering Materials in Hydrogen
,
M. R.
Louthan
,
R. P.
McNitt
, and
R. D.
Sisson
, eds.,
Laboratory for the Study of Environmental Degradation of Engineering Materials
,
Virginia Polytechnic Institute
,
Blacksburg, VA
, pp.
283
302
.
15.
Caskey
,
G. R.
, 1985, “
Hydrogen Effects in Stainless Steels
,”
Hydrogen Degradation of Ferrous Alloys
,
R. A.
Oriani
,
J. P.
Hirth
, and
M.
Smialowski
, eds.,
Noyes
,
Park Ridge, NJ
, pp.
822
862
.
16.
Walter
,
R. J.
, and
Chandler
,
W. T.
, 1969, “
Effects of High-Pressure Hydrogen on Metals at Ambient Temperature
,” NASA, Final Report No. CR-102425,
Rocketdyne, National Aeronautics and Space Administration, Report No. R-7780-1.
17.
Capeletti
,
T. L.
, and
Louthan
,
M. R.
, 1977, “
The Tensile Ductility of Austenitic Steels in Air and Hydrogen
,”
J. Eng. Mater. Technol.
0094-4289,
99
, pp.
153
158 (
1977).
18.
Odegard
,
B. C.
, and
West
,
A. J.
, 1975, “
On the Thermo-Mechanical Behavior and Hydrogen Compatibility of 22-13-5 Stainless Steel
,”
Mater. Sci. Eng.
0025-5416,
19
, pp.
261
270
.
19.
Somerday
,
B. P.
, and
Robinson
,
S. L.
, 2003, “
H- and Tritium-Assisted Fracture in N-Strengthened, Austenitic Stainless Steel
,”
JOM
1047-4838,
55
, pp.
51
55
.
20.
West
,
A. J.
, and
Louthan
,
M. R.
, 1979, “
Dislocation Transport and Hydrogen Embrittlement
,”
Mater. Sci. Eng.
0025-5416,
10A
, pp.
1675
1682
.
21.
Thompson
,
A. W.
, 1974, “
The Behavior of Sensitized 309S Stainless Steel in Hydrogen
,”
Mater. Sci. Eng.
0025-5416,
14
, pp.
253
264
.
22.
Han
,
G.
,
He
,
J.
,
Fukuyama
,
S.
, and
Yokogawa
,
K.
, 1998, “
Effect of Strain-Induced Martensite on Hydrogen Environment Embrittlement of Sensitized Austenitic Stainless Steels at Low Temperatures
,”
Acta Mater.
1359-6454,
46
, pp.
4559
4570
.
23.
Thompson
,
A. W.
, 1975, “
The Mechanism of Hydrogen Participation in Ductile Fracture
,”
Proceedings of an International Conference on Effect of Hydrogen on Behavior of Materials
,
A. W.
Thompson
and
I. M.
Bernstein
, eds.,
The Metallurgical Society of AIME
,
Moran, WY
, pp.
467
477
.
24.
Thompson
,
A. W.
, 1979, “
Ductile Fracture Topography: Geometrical Contributions and Effects of Hydrogen
,”
Metall. Trans. A
0360-2133,
10A
, pp.
727
731
(1979).
25.
Thompson
,
A. W.
, 1983, “
The Relation Between Changes in Ductility an in Ductile Fracture Topography: Control of Microvoid Nucleation
,”
Acta Metall.
0001-6160,
31
, pp.
1517
1523
.
26.
Moody
,
N. R.
,
Stoltz
,
R. E.
, and
Perra
,
M. W.
, 1987, “
Effect of Hydrogen on Fracture Toughness of the Fe-Ni-Co Superalloy IN903
,”
Metall. Trans. A
0360-2133,
19A
, pp.
1469
1482
.
27.
Moody
,
N. R.
,
Perra
,
M. W.
, and
Robinson
,
S. L.
, 1988, “
Hydrogen Pressure and Crack Tip Stress Effects on Slow Crack Growth Thresholds in an Iron-Based Superalloy
,”
Scr. Metall.
0036-9748,
22
, pp.
1261
1266
.
28.
Louthan
,
M. R.
, and
Morgan
,
M. J.
, 1996, “
Some Technology Gaps in the Detection and Prediction of Hydrogen-Induced Degradation of Metals and Alloys
,”
J. Nondestruct. Eval.
0195-9298,
15
, pp.
113
120
.
29.
Bockris
,
J. O. M.
, and
Subramanyan
,
P. K.
, 1971, “
A Thermodynamic Analysis of Hydrogen in Metals in the Presence of an Applied Stress Field
,”
Acta Metall.
0001-6160,
19
, pp.
1205
1208
.
30.
Holbrook
,
J. H.
, and
West
,
A. J.
, 1980, “
The Effect of Temperature and Strain Rate on the Tensile Properties of Hydrogen Charged 304L, 21-6-9, and, JBK 75
,”
Proceedings of the International Conference on Effect of Hydrogen on Behavior of Materials: Hydrogen Effects in Metals
,
I. M.
Bernstein
and
A. W.
Thompson
, eds.,
The Metallurgical Society of AIME
,
Moran, WY
, pp.
655
663
.
31.
Morgan
,
M. J.
, 1991, “
The Effects of Hydrogen Isotopes and Helium on the Flow and Fracture Properties of 21-6-9 Stainless Steel
,”
Proceedings of the Morris E. Fine Symposium
,
P. K.
Liaw
,
J. R.
Weertman
,
H. L.
Marcus
and
J. S.
Santner
, eds.,
TMS, Warrendale, PA
, pp.
105
111
.
32.
Thompson
,
A. W.
, and
Bernstein
,
I. M.
, 1980, “
The Role of Metallurgical Variables in Hydrogen-Assisted Environmental Fracture
,”
Advances in Corrosion Science and Technology
, Vol.
7
,
M. G.
Fontana
and
R. W.
Staehle
, eds.,
Plenum
,
New York
, pp.
53
175
.
33.
Stoltz
,
R. E.
, and
VanderSande
,
J. B.
, 1980, “
The Effect of Nitrogen on Stacking Fault Energy of Fe-Ni-Cr-Mn Steels
,”
Metall. Trans. A
0360-2133,
11A
, pp.
1033
1037
.
34.
Schramm
,
R. E.
, and
Reed
,
R. P.
, 1975, “
Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels
,”
Metall. Trans. A
0360-2133,
6A
, pp.
1345
1351
.
35.
Rhodes
,
C. G.
, and
Thompson
,
A. W.
, 1977, “
The Composition Dependence of Stacking Fault Energy in Austenitic Stainless Steels
,”
Metall. Trans. A
0360-2133,
8A
, pp.
1901
1905
.
You do not currently have access to this content.