Abstract

A pipeline inspection gauge (PIG) is an effective device for pipeline cleaning and inspection. Furthermore, a speed-controlled PIG can adjust speed by controlling the bypass valve. The conventional-speed controlled PIG uses batteries as an energy source to adjust the bypass valve. Battery power and other electronic equipment will limit running distance and cause a potential security risk. In this paper, a PIG with a hydraulic automatic control system is presented. The kinematic model of the PIG in the liquid pipeline is obtained by studying the hydraulic automatic control system and PIG movement mechanism with a bypass valve. A numerical method was used to solve the PIG's kinematic model. Through parameter sensitivity analysis, the influence law of each parameter on the entire system is obtained. The case study was conducted by a numerical method, which confirmed that the hydraulic automatically controlled PIG has speed control ability. Compared with a PIG without the speed control system, the hydraulic automatic speed-controlled PIG has better motion performance in the fluctuating pipeline.

References

1.
Mcdonald
,
A. E.
, and
Baker
,
O.
,
1964
, “
Multiphase Flow in Pipelines
,”
Oil Gas J.
,
62
(
27
), pp.
118
119
. https://www.tib.eu/en/search/id/ei-backfile%3Ac84_db6956fa344b718aM771619817173212/Multiphase-flow-in-pipelines
2.
Kohda
,
K.
,
Suzukawa
,
Y.
, and
Furukawa
,
H.
,
1988
, “
New Method for Analyzing Transient Flow After Pigging Scores Well
,”
Oil Gas J.
,
86
(
19
), pp.
40
47
. https://inis.iaea.org/search/search.aspx?orig_q=RN:19089001
3.
Nieckele
,
A. O.
,
Braga
,
A. M. B.
, and
Azevedo
,
L. F. A.
,
2001
, “
Transient Pig Motion Through Gas and Liquid Pipelines
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
260
269
.10.1115/1.1413466
4.
Esmaeilzadeh
,
F.
,
Mowla
,
D.
, and
Asemani
,
M.
,
2009
, “
Mathematical Modeling and Simulation of Pigging Operation in Gas and Liquid Pipelines
,”
J. Pet. Sci. Eng.
,
69
(
1–2
), pp.
100
106
.10.1016/j.petrol.2009.08.006
5.
Solghar
,
A. A.
, and
Davoudian
,
M.
,
2012
, “
Analysis of Transient PIG Motion in Natural Gas Pipeline
,”
Mech. Ind.
,
13
(
5
), pp.
293
300
.10.1051/meca/2012039
6.
Mirshamsi
,
M.
, and
Rafeeyan
,
M.
,
2015
, “
Dynamic Analysis and Simulation of Long Pig in Gas Pipeline
,”
J. Nat. Gas Sci. Eng.
,
23
, pp.
294
303
.10.1016/j.jngse.2015.02.004
7.
Parilli
,
D. J.
,
Blanco
,
A.
, and
Garcia
,
J.
,
2016
, “
Influence of PIG Mass, Launching Time and Turbulence Model on 3-D CFD Transient Simulation of PIG Motion
,”
ASME
Paper No. IMECE2016-66956. 10.1115/IMECE2016-66956
8.
Podgorbunskikh
,
A. M.
,
2008
, “
Devices for Automated Regulation of the Velocity of in-Tube Pig Flaw Detectors (Review)
,”
Russ. J. Nondestr. Test.
,
44
(
5
), pp.
343
350
.10.1134/S1061830908050070
9.
Haniffa
,
M. A.
, and
Hashim
,
F. M.
,
2012
, “
Recent Developments in Speed Control System of Pipeline PIGs for Deepwater Pipeline Applications
,”
World Acad. Sci., Eng. Technol.
,
6
(
2
), pp.
437
440
. https://www.semanticscholar.org/paper/Recent-Developments-in-Speed-Control-System-of-PIGs-Haniffa-Hashim/781d048a56590a18c1661545a3c6c391401d3ac7
10.
Xiaoxiao
,
Z.
,
Shimin
,
Z.
,
Xiaolong
,
L.
,
Da
,
Y.
, and
Deguo
,
W.
,
2014
, “
Research and Design Progress of Speed Control Device of Adjustable-Speed Pig
,”
Oil Gas Storage Transp.
,
33
(
9
), pp.
922
927
.
11.
Campbell
,
D. C.
,
1992
, “
Variable Speed Pig for Pipelines
,” U.S. Patent No. 5208936.
12.
Nguyen
,
T. T.
,
Yoo
,
H. R.
,
Rho
,
Y. W.
, and
Kim
,
S. B.
,
2001
, “
Speed Control of PIG Using Bypass Flow in Natural Gas Pipeline
,”
IEEE International Symposium on Industrial Electronics Proceedings
,
Pusan, South Korea
,
June 12–16
, pp.
863
868
.
13.
Money
,
N.
,
Cockfield
,
D.
,
Mayo
,
S.
, and
Smith
,
G.
,
2012
, “
Dynamic Speed Control in High Velocity Pipelines
,” Pigging Products and Services Association Seminar, Aberdeen, UK, Nov. 14, pp.
1
12
.
14.
Lesani
,
M.
,
Rafeeyan
,
M.
, and
Sohankar
,
A.
,
2012
, “
Dynamic Analysis of Small Pig Through Two and Three-Dimensional Liquid Pipeline
,”
J. Appl. Fluid Mech.
,
5
(
2
), pp.
75
83
. http://jafmonline.net/JournalArchive/download?file_ID=15366&issue_ID=208
15.
Tan
,
G.
,
Zhang
,
S.
, and
Zhu
,
X.
,
2011
, “
Design of the Speed Regulating PIG with Butterfly Bypass-Valve
,”
Adv. Mater. Res.
,
201–203
, pp.
429
432
.10.4028/www.scientific.net/AMR.201-203.429
16.
Mirshamsi
,
M.
, and
Rafeeyan
,
M.
,
2012
, “
Speed Control of Pipeline Pig Using the QFT Method
,”
Oil Gas Sci. Technol.—Revue d'IFP Energies Nouvelles
,
67
(
4
), pp.
693
701
.10.2516/ogst/2012008
17.
Zhu
,
X.
,
Zhang
,
S.
,
Tan
,
G.
,
Wang
,
D.
, and
Wang
,
W.
,
2014
, “
Experimental Study on Dynamics of Rotatable Bypass-Valve in Speed Control Pig in Gas Pipeline
,”
Measurements
,
47
, pp.
686
692
.10.1016/j.measurement.2013.08.060
18.
Groote
,
G. A.
,
Camp
,
P.
,
Veenstra
,
P.
,
Broze
,
G.
, and
Henkes
,
R.
,
2015
, “
By-Pass Pigging Without or With Speed Control for Gas-Condensate Pipelines
,”
Abu Dhabi International Petroleum Exhibition and Conference
,
Abu Dhabi, United Arab Emirates
,
Nov. 9–12
, pp.
1
13
.
19.
Azpiroz
,
J. E.
,
Hendrix
,
M.
,
Breugem
,
W. P.
, and
Henkes
,
R.
,
2015
, “
CFD Modelling of Bypass Pigs With a Deflector Disk
,”
17th International Conference on Multiphase Production Technology
,
Cannes, France
,
June 10–12
, pp.
141
158
.
20.
Hendrix
,
M. H. W.
,
Liang
,
X.
,
Breugem
,
W. P.
, and
Henkes
,
R. A. W. M.
,
2017
, “
Characterization of the Pressure Loss Coefficient Using a Building Block Approach With Application to By-Pass Pigs
,”
J. Pet. Sci. Eng.
,
150
, pp.
13
21
.10.1016/j.petrol.2016.11.009
21.
Hendrix
,
M. H. W.
,
Ijsseldijk
,
H. P.
,
Breugem
,
W. P.
, and
Henkes
,
R. A. W. M.
,
2017
, “
Development of Speed Controlled Pigging for Low Pressure Pipelines
,”
18th International Conference on Multiphase Production Technology
,
Cannes, France
,
June 7–9
, pp.
501
509
.
22.
Liang
,
Z.
,
He
,
H.
, and
Cai
,
W.
,
2017
, “
Speed Simulation of Bypass Hole PIG with a Brake Unit in Liquid Pipe
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
40
47
.10.1016/j.jngse.2017.03.011
23.
Tao
,
R.
,
Qingyou
,
L.
, and
Junfu
,
Z.
,
2017
, “
Hydraulic Feedback Speed Control Pipeline Robot
,” Patent No. CN105822868A.
You do not currently have access to this content.