Abstract

In Japan, to prevent nil-ductile fracture of reactor pressure vessels (RPVs) due to neutron irradiation embrittlement, deterministic fracture mechanics evaluation in accordance with the codes provided by the Japan Electric Association is performed for assessing the structural integrity of RPVs under pressurized thermal shock (PTS) events considering neutron irradiation embrittlement. In recent years, a structural integrity assessment methodology based on probabilistic fracture mechanics (PFM) has been introduced into the regulations in the United States and a few European countries. PFM is a rational methodology for evaluating the failure frequency of important pressure boundary components by considering the probabilistic distributions of various influence factors related to aged degradation due to the long-term operation. In Japan Atomic Energy Agency (JAEA), a PFM analysis code called PASCAL has been developed to evaluate the failure frequency of RPVs considering neutron irradiation embrittlement and PTS events. In addition, we have developed a guideline for structural integrity assessment of RPVs based on PFM to improve the applicability of PFM in Japan and enable persons who have knowledge on fracture mechanics to perform PFM analyses and evaluate through-wall cracking frequency (TWCF) of RPVs easily. The guideline consists of a main body, explanation, and several supplements. The technical basis for PFM analysis is provided, and the latest knowledge is included in the guideline. In this paper, an overview of the guideline and some typical analysis results obtained based on the guideline and the Japanese database related to PTS evaluation are presented.

References

References
1.
 
JEAC
,
2016
, “
Verification Method of Fracture Toughness for In-Service Reactor Pressure Vessel
,” Japan Electric Association, Tokyo, Japan, Report No. JEAC4206-2016.
2.
EricksonKirk
,
M.
,
Junge
,
M.
,
Arcieri
,
W.
,
Bass
,
B. R.
,
Beaton
,
R.
,
Bessette
,
D.
,
Chang
,
T. H. J.
,
Dickson
,
T.
,
Fletcher
,
C. D.
,
Kolaczkowski
,
A.
,
Malik
,
S.
,
Mintz
,
T.
,
Pugh
,
C.
,
Simonen
,
F.
,
Siu
,
N.
,
Whitehead
,
D.
,
Williams
,
P.
,
Woods
,
R.
, and
Yin
,
S.
,
2007
, “
Technical Basis for Revision of the Pressurized Thermal Shock (PTS) Screening Limit in the PTS Rule (10 CFR 50.61)
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG-1806.
3.
EricksonKirk
,
M. T.
, and
Dickson
,
T. L.
,
2007
, “
Recommended Screening Limits for Pressurized Thermal Shock (PTS)
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG-1874.
4.
Dickson
,
T. L.
,
Williams
,
P. T.
, and
Yin
,
S.
,
2007
, “
Fracture Analysis of Vessels—Oak Ridge, FAVOR, v06.1, Computer Code: User's Guide
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. ORNL/TM-2007/031.
5.
Williams
,
P. T.
,
Dickson
,
T. L.
, and
Yon
,
S.
,
2012
, “
Fracture Analysis of Vessels—Oak Ridge FAVOR, v12.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. ORNL/TM-2012/567.
6.
U. S. NRC
,
2010
, “
Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events
,” U.S. Nuclear Regulatory Commission, Washington, DC, 10, Code of Federal Regulations, Part 50, Section 50.61a.
7.
Osakabe
,
K.
,
Kato
,
D.
,
Onizawa
,
K.
, and
Shibata
,
K.
,
2006
, “
User's Manual and Analysis Methodology of Probabilistic Fracture Mechanics Analysis Code PASCAL Ver.2 for Reactor Pressure Vessel
,” Japan Atomic Energy Agency, Tokai, Japan, Report No.
JAEA-Data/Code 2006-020
(in Japanese).10.11484/JAEA-Data-Code-2006-020
8.
Masaki
,
K.
,
Nishikawa
,
H.
,
Osakabe
,
K.
, and
Onizawa
,
K.
,
2011
, “
User's Manual and Analysis Methodology of Probabilistic Fracture Mechanics Analysis Code PASCAL3 for Reactor Pressure Vessel (Contract Research)
,” Japan Atomic Energy Agency, Tokai, Japan, Report No.
JAEA-Data/Code 2010-033
(in Japanese).http://jolissrch-inter.tokai-sc.jaea.go.jp/pdfdata/JAEA-Data-Code-2010-033.pdf
9.
Shibata
,
K.
,
Kato
,
D.
, and
Li
,
Y.
,
2001
, “
Development of a PFM Code for Evaluating Reliability of Pressure Components Subject to Transient Loading
,”
Nucl. Eng. Des.
,
208
(
1
), pp.
1
13
.10.1016/S0029-5493(01)00361-2
10.
Onizawa
,
K.
,
Shibata
,
K.
,
Osakabe
,
K.
, and
Tanaka
,
K.
,
2006
, “
Improvements to PFM Analysis Code PASCAL and Some Case Studies on RPV Integrity During Pressurized Thermal Shock
,”
ASME
Paper No. PVP2006-ICPVT11-93368
.10.1115/PVP2006-ICPVT-11-93368
11.
Osakabe
,
K.
,
Onizawa
,
K.
,
Shibata
,
K.
, and
Suzuki
,
M.
,
2007
, “
Development of Probabilistic Fracture Mechanics Analysis Code PASCAL Ver.2 for Reactor Pressure Vessel
,”
Trans. At. Energy Soc. Jpn.
,
6
(
2
), pp.
161
171
(in Japanese).10.3327/taesj.J06.052
12.
Onizawa
,
K.
,
Nishikawa
,
H.
, and
Itoh
,
H.
,
2010
, “
Development of Probabilistic Fracture Mechanics Analysis Codes for Reactor Pressure Vessels and Piping Considering Welding Residual Stress
,”
Int. J. Pressure Vessels Piping
,
87
(
1
), pp.
2
10
.10.1016/j.ijpvp.2009.11.011
13.
Onizawa
,
K.
,
Masaki
,
K.
, and
Katsuyama
,
J.
,
2012
, “
Probabilistic Structural Integrity Analysis of Reactor Pressure Vessels During PTS Events
,”
ASME
Paper No. PVP2012-78836
.10.1115/PVP2012-78836
14.
Lu
,
K.
,
Masaki
,
K.
,
Katsuyama
,
J.
,
Li
,
Y.
, and
Uno
,
S.
,
2012
, “
Development of Probabilistic Fracture Mechanics Code PASCAL Version 4 for Reactor Pressure Vessels
,”
ASME
Paper No. PVP2018-84964
. 10.1115/PVP2018-84964
15.
JEAC
,
2013
, “
Method of Surveillance Tests for Structural Materials of Nuclear Reactors
,” Japan Electric Association, Tokyo, Japan, Report No. JEAC4201-2007.
16.
Katsuyama
,
J.
,
Katsumata
,
G.
,
Onizawa
,
K.
,
Osakabe
,
K.
, and
Yoshimoto
,
K.
,
2015
, “
Development of Probabilistic Evaluation Models of Fracture Toughness KIc and KIa for Japanese RPV Steels
,”
ASME
Paper No. PVP2015-45915
. 10.1115/PVP2015-45915
17.
Katsuyama
,
J.
,
Osakabe
,
K.
,
Uno
,
S.
, and
Li
,
Y.
,
2016
, “
Guideline on a Structural Integrity Assessment for Reactor Pressure Vessel Based on Probabilistic Fracture Mechanics
,” Japan Atomic Energy Agency, Tokai, Japan, Report No.
JAEA-Research 2016-022
.10.11484/jaea-research-2016-022
18.
Kanto
,
Y.
,
Jhung
,
M.
,
Ting
,
K.
,
He
,
Y.
,
Onizawa
,
K.
, and
Yoshimura
,
S.
,
2012
, “
Summary of International PFM Round Robin Analyses Among Asian Countries on Reactor Pressure Vessel Integrity During Pressurized Thermal Shock
,”
Int. J. Pressure Vessels Piping
,
90–91
, pp.
46
55
.10.1016/j.ijpvp.2011.10.007
19.
Li
,
Y.
,
Katsumata
,
G.
,
Masaki
,
K.
,
Hayashi
,
S.
,
Itabashi
,
T.
,
Nagai
,
M.
,
Suzuki
,
M.
, and
Kanto
,
Y.
,
2017
, “
Verification of Probabilistic Fracture Mechanics Analysis Code PASCAL
,”
ASME
Paper No. ICONE25-66468
. 10.1115/ICONE25-66468
20.
Li
,
Y.
,
Uno
,
S.
,
Katsuyama
,
J.
,
Dickson
,
T. L.
, and
Kirk
,
M.
,
2017
, “
Verification of Probabilistic Fracture Mechanics Analysis Code PASCAL Through Benchmark Analyses With FAVOR
,”
ASME
Paper No. PVP2017-66004
. 10.1115/PVP2017-66004
21.
Li
,
Y.
,
Uno
,
S.
,
Masaki
,
K.
,
Katsuyama
,
J.
,
Dickson
,
T. L.
, and
Kirk
,
M.
,
2018
, “
Verification of Probabilistic Fracture Mechanics Analysis Code PASCAL Through Benchmark Analyses
,”
ASME
Paper No. PVP2018-84963
. 10.1115/PVP2018-84963
22.
Lu
,
K.
,
Katsuyama
,
J.
,
Li
,
Y.
,
Miyamoto
,
Y.
,
Hirota
,
T.
,
Itabashi
,
T.
,
Nagai
,
M.
,
Suzuki
,
M.
, and
Kanto
,
Y.
,
2019
, “
Verification of a Probabilistic Fracture Mechanics Analysis Code PASCAL4 for Reactor Pressure Vessels
,”
ASME
Paper No. ICONE27-2320
.10.1299/jsmeicone.2019.27.2320
23.
French Association for Design
,
2015
, “
RSE-M appendix
,” French Association for Design, France.
24.
Douglas
,
D.
, and
Peucker
,
T.
,
1973
, “
Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature
,”
Can. Cartographer
,
10
(
2
), pp.
112
122
.10.3138/FM57-6770-U75U-7727
25.
Simonen
,
F. A.
,
Doctor
,
S. R.
,
Schuster
,
G. J.
, and
Heasler
,
P. G.
,
2003
, “
A Generalized Procedure for Generating Flaw-Related Inputs for the FAVOR Code
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-6817.
26.
Stevens
,
G. L.
,
Kirk
,
M. T.
, and
Modarres
,
M.
,
2015
, “
Technical Basis for Regulatory Guidance on the Alternate Pressurized Thermal Shock Rule
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG-2163.
27.
Lu
,
K.
,
Miyamoto
,
Y.
,
Mano
,
A.
,
Katsuyama
,
J.
, and
Li
,
Y.
,
2017
, “
An Estimation Method of Flaw Distributions Reflecting Inspection Results Through Bayesian Update
,”
Asian Symposium on Risk Assessment and Management 2017
, Japan, Paper No. ASRAM2017-1025.
28.
JSME
,
2012
, “
Rules on Fitness-for-Service for Nuclear Power Plants
,” The Japan Society of Mechanical Engineers, Tokyo, Japan, Report No. JSME S NA1-2012.
29.
ASME
,
2015
,
ASME B&PV Code Section XI, Rules for In-Service Inspection of Nuclear Power Plant Components
,
American Society of Mechanical Engineers
,
New York
.
30.
Lu
,
K.
,
Masaki
,
K.
,
Katsuyama
,
J.
, and
Li
,
Y.
,
2018
, “
Development of Crack Evaluation Models for Probabilistic Fracture Mechanics Analyses of Japanese Reactor Pressure Vessels
,”
ASME
Paper No. PVP2018-84965
. 10.1115/PVP2018-84965
31.
Katsuyama
,
J.
,
Masaki
,
K.
,
Miyamoto
,
Y.
, and
Li
,
Y.
,
2017
, “
User's Manual and Analysis Methodology of Probabilistic Fracture Mechanics Analysis Code PASCAL Ver.4 for Reactor Pressure Vessel
,” Japan, Report No.
JAEA-Data/Code 2017-015
.10.11484/jaea-data-code-2017-015
32.
U. S. NRC
,
2000
, “
Reactor Vessel Integrity Database (RVID), Version 2.1.1
,” U.S. Nuclear Regulatory Commission, Washington, DC.
33.
U. S. NRC
, “
Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. 10CFR50.61.
34.
Katsuyama
,
J.
,
Osakabe
,
K.
,
Uno
,
S.
, and
Li
,
Y.
,
2017
, “
Guideline on Probabilistic Fracture Mechanics Analysis for Japanese Reactor Pressure Vessels
,” Japan Atomic Energy Agency, Tokai, Japan, Report No. JAEA-Research 2016-022 (in Japanese).
35.
Moinereau
,
D.
,
Landron
,
C.
,
Chapuliot
,
S.
, and
Marie
,
S.
,
2015
, “
Validation of ACE Analytical Criterion for Warm Pre-Stress Evaluation in RPV Integrity Assessment
,”
ASME
Paper No. PVP2015-45103
. 10.1115/PVP2015-45103
36.
Iwata
,
K.
,
Tobita
,
T.
,
Takamizawa
,
H.
,
Chimi
,
Y.
,
Yoshimoto
,
K.
, and
Nishiyama
,
Y.
,
2016
, “
Specimen Size Effect on Fracture Toughness of Reactor Pressure Vessel Steel Following Warm Pre-Stressing
,”
ASME
Paper No. PVP2016-63795
. 10.1115/PVP2016-63795
37.
U. S. NRC
,
1999
, “
Characterization of Flaws in U.S. Reactor Pressure Vessels
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-6471.
38.
Chou
,
H. W.
, and
Huang
,
C. C.
,
2014
, “
Structural Reliability Evaluation on the Pressurized Water Reactor Pressure Vessel Under Pressurized Thermal Shock Events
,”
ASME
Paper No. PVP2014-28350
. 10.1115/PVP2014-28350
39.
Hirota
,
T.
,
Sakamoto
,
H.
, and
Ogawa
,
N.
,
2014
, “
Proposal for Update on Evaluation Procedure for Reactor Pressure Vessels Against Pressurized Thermal Shock Events in Japan
,”
ASME
Paper No. PVP2014-28392
. 10.1115/PVP2014-28392
40.
Katsuyama
,
J.
,
Nishikawa
,
H.
,
Udagawa
,
M.
,
Nakamura
,
M.
, and
Onizawa
,
K.
,
2013
, “
Assessment of Residual Stress Due to Overlay-Welded Cladding and Structural Integrity of a Reactor Pressure Vessel
,”
ASME J. Pressure Vessel Technol.
,
135
(
5
), p.
051402
.10.1115/1.4024617
41.
Marie
,
S.
, and
Chapuliot
,
S.
,
2008
, “
Improvement of the Calculation of the Stress Intensity Factors for Underclad and Through-Clad Defects in a Reactor Pressure Vessel Subjected to a Pressurized Thermal Shock
,”
Int. J. Pressure Vessels Piping
,
85
(
8
), pp.
517
531
.10.1016/j.ijpvp.2008.02.006
42.
ASME
,
2017
, “
ASME B&PV Code Section XI, Rules for In-Service Inspection of Nuclear Power Plant Components
,” American Society of Mechanical Engineers, New York, Standard No. ASME BPVC. XI 2017.
43.
Lu
,
K.
,
Mano
,
A.
,
Katsuyama
,
J.
,
Li
,
Y.
, and
Iwamatsu
,
F.
,
2018
, “
Development of Stress Intensity Factor Solutions for Subsurface Flaws in Plates Subjected to Polynomial Stress Distributions
,”
ASME J. Pressure Vessel Technol.
,
140
(
3
), p.
031201
.10.1115/1.4039125
44.
JSME
,
2016
, Codes for Nuclear Power Generation Facilities- Rules on Fitness-for-Service for Nuclear Power Plants, Japan Society of Mechanical Engineers, Tokyo, Japan, Standard No. JSME S NA1-2016.
You do not currently have access to this content.