Abstract

In this article, the analytical buckling load coefficient formula for a cylinder with circumferential thickness variation subjected to varying external pressure is established for the first time by developing a quadratic perturbation method. Based on the presented formula, some specific examples that consider either circumferential shell thickness variation or varying lateral pressure are studied and compared with those in the published literature. First, classical cosine thickness variation is analyzed. The computed results of buckling load coefficients indicate that most of differences between the proposed formula and finite element (FE) analyses in previous literature are less than 5%. Second, wind-type pressure load is discussed, and the maximum difference of predicted buckling load coefficients between our formula and results in published article is 2.3%. Third, both circumferential thickness variation and linear liquid pressure are analyzed by the proposed analytical formula and validated by the Galerkin method when both thickness and load variations are small. Therefore, accuracy and reliability of the established formula are validated. For the purpose of engineering application, buckling of a circular shell with local circumferential thickness variation due to weld shrinkage under wind-type pressure is analytically investigated. The effects of thickness variation amplitude, load parameter, half angle of thickness variation, and shell dimensions on buckling load coefficients are studied in detail.

References

1.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill International Book Company
,
New York
.
2.
API
,
2005
, “
Welded Steel Tanks for Oil Storage
,”
American Petroleum Institute
,
Washington, DC
, Standard No. API 650.
3.
Gusic
,
G.
,
Combescure
,
A.
, and
Jullien
,
J. F.
,
2000
, “
The Influence of Circumferential Thickness Variations on the Buckling of Cylindrical Shells Under Lateral Pressure
,”
Comput. Struct.
,
74
(
4
), pp.
461
477
.10.1016/S0045-7949(99)00053-X
4.
Combescure
,
A.
, and
Gusic
,
G.
,
2001
, “
Nonlinear Buckling of Cylinders Under Lateral Pressure With Nonaxisymmetric Thickness Imperfections Using the COMI Axisymmetric Shell Element
,”
Int. J. Solids. Struct.
,
38
(
34–35
), pp.
6207
6226
.10.1016/S0020-7683(00)00359-0
5.
Nguyen
,
H. L. T.
,
Elishakoff
,
I.
, and
Nguyen
,
V. T.
,
2009
, “
Buckling Under the External Pressure of Cylindrical Shells With Variable Thickness
,”
Int. J. Solids. Struct.
,
46
(
24
), pp.
4163
4168
.10.1016/j.ijsolstr.2009.07.025
6.
Aghajari
,
S.
,
Showkati
,
H.
, and
Abedi
,
K.
,
2011
, “
Experimental Investigation on the Buckling of Thin Cylindrical Shells With Two-Stepwise Variable Thickness Under External Pressure
,”
Struct. Eng. Mech.
,
39
(
6
), pp.
849
860
.10.12989/sem.2011.39.6.849
7.
Yang
,
L. C.
,
Chen
,
Z. P.
,
Cao
,
G. W.
,
Yu
,
C. L.
, and
Guo
,
W. J.
,
2013
, “
An Analytical Formula for Elastic-Plastic Instability of Large Oil Storage Tanks
,”
Int. J. Pres. Ves. Pipe
,
101
, pp.
72
80
.10.1016/j.ijpvp.2012.10.006
8.
Yang
,
L. C.
,
Chen
,
Z. P.
,
Chen
,
F. C.
,
Guo
,
W. J.
, and
Cao
,
G. W.
,
2013
, “
Buckling of Cylindrical Shells With General Axisymmetric Thickness Imperfections Under External Pressure
,”
Eur. J. Mech. A-Solid
,
38
, pp.
90
99
.10.1016/j.euromechsol.2012.09.006
9.
Yang
,
L. C.
,
Luo
,
Y.
,
Qiu
,
T.
,
Yang
,
M.
,
Zhou
,
G. B.
, and
Xie
,
G. F.
,
2014
, “
An Analytical Method for the Buckling Analysis of Cylindrical Shells With Non-Axisymmetric Thickness Variations Under External Pressure
,”
Thin-Walled. Struct.
,
85
, pp.
431
440
.10.1016/j.tws.2014.09.014
10.
Feng
,
W. Z.
,
Chen
,
Z. P.
,
Jiao
,
P.
,
Zhou
,
F.
, and
Fan
,
H. G.
,
2017
, “
Buckling of Cylindrical Shells With Arbitrary Circumferential Thickness Variations Under External Pressure
,”
J. Mech.
,
33
(
1
), pp.
55
64
.10.1017/jmech.2016.59
11.
Mahboubi Nasrekani
,
F.
, and
Eipakchi
,
H.
,
2019
, “
Analytical Solution for Buckling Analysis of Cylinders With Varying Thickness Subjected to Combined Axial and Radial Loads
,”
Int. J. Pres. Ves. Pip.
,
172
, pp.
220
226
.10.1016/j.ijpvp.2019.03.036
12.
Zhang
,
J.
,
Zhang
,
S.
,
Cui
,
W.
,
Zhao
,
X.
,
Tang
,
W.
, and
Wang
,
F.
,
2019
, “
Buckling of Circumferentially Corrugated Cylindrical Shells Under Uniform External Pressure
,”
Ships. Offshore. Struct.
,
14
(
8
), pp.
879
889
.10.1080/17445302.2019.1573873
13.
Li
,
Z.
,
Shen
,
K. C.
,
Zhang
,
X. H.
, and
Pan
,
G.
,
2022
, “
Buckling of Composite Cylindrical Shells With Ovality and Thickness Variation Subjected to Hydrostatic Pressure
,”
Def. Technol., Press.
,
18
(
5
), pp.
862
875
.10.1016/j.dt.2021.06.011
14.
Lai
,
A. D.
,
Jia
,
J. F.
,
Zhou
,
Z. H.
,
Xu
,
X. S.
, and
Lim
,
C. M.
,
2022
, “
Homotopic Analysis for Post-Buckling of Cylindrical Shells With Local Thickness Defects
,”
Acta. Astronaut.
,
193
, pp.
44
55
.10.1016/j.actaastro.2022.01.005
15.
Almroth
,
B. O.
,
1962
, “
Buckling of a Cylindrical Shell Subjected to Nonuniform External Pressure
,”
ASME J. Appl. Mech.
,
29
(
4
), pp.
675
682
.10.1115/1.3640653
16.
Jerath
,
S.
, and
Ghosh
,
A. K.
,
1987
, “
Buckling of Cylindrical Shells Under the Action of Nonuniform External Pressure
,”
Comput. Struct.
,
25
(
4
), pp.
607
614
.10.1016/0045-7949(87)90268-9
17.
Chiba
,
M.
,
Yamashida
,
T.
, and
Yamauchi
,
M.
,
1989
, “
Buckling of Circular Cylindrical Shells Partially Subjected to External Liquid Pressure
,”
Thin-Walled. Struct.
,
8
(
3
), pp.
217
233
.10.1016/0263-8231(89)90004-9
18.
Li
,
Z. M.
, and
Lin
,
Z. Q.
,
2010
, “
Non-Linear Buckling and Postbuckling of Shear Deformable Anisotropic Laminated Cylindrical Shell Subjected to Varying External Pressure Loads
,”
Compos. Struct.
,
92
(
2
), pp.
553
567
.10.1016/j.compstruct.2009.08.048
19.
Obodan
,
N. I.
, and
Gromov
,
V. A.
,
2013
, “
Nonlinear Behavior and Buckling of Cylindrical Shells Subjected to Localized External Pressure
,”
J. Eng. Math.
,
78
(
1
), pp.
239
248
.10.1007/s10665-012-9553-1
20.
Andrianov
,
I. I.
,
2019
, “
Analytical Investigation of Buckling of a Cylindrical Shell Subjected to Nonuniform External Pressure
,”
Math. Mech. Solids
,
24
(
3
), pp.
874
883
.10.1177/1081286518756179
21.
Wang
,
B.
,
Yang
,
M. S.
,
Zeng
,
D. J.
,
Hao
,
P.
,
Li
,
G.
,
Liu
,
Y.
, and
Tian
,
K.
,
2021
, “
Post-Buckling Behavior of Stiffened Cylindrical Shell and Experimental Validation Under Non-Uniform External Pressure and Axial Compression
,”
Thin-Walled. Struct.
,
161
, p.
107481
.10.1016/j.tws.2021.107481
22.
Yang
,
L. C.
,
Luo
,
Y.
,
Qiu
,
T.
,
Zheng
,
H.
, and
Zeng
,
P.
,
2022
, “
A Novel Analytical Study on the Buckling of Cylindrical Shells Subjected to Arbitrarily Distributed External Pressure
,”
Eur. J. Mech. A-Solid
,
91
, p.
104406
.10.1016/j.euromechsol.2021.104406
23.
Yang
,
L. C.
,
Li
,
Y. G.
,
Qiu
,
T.
,
Dong
,
Y. Y.
, and
Zhang
,
S. L.
,
2022
, “
An Analytical Buckling Load Formula for a Cylindrical Shell Subjected to Local Axial Compression
,”
ASME J. Pressure Vessel Technol.
,
144
(
4
), p.
041301
.10.1115/1.4052976
You do not currently have access to this content.