Abstract

An essential part of today's power plants are flanges, for example, as connection between turbine housings and pipes. They allow for revisions, inspections, and maintenance measures. Ongoing changes toward higher amounts of renewable energy sources leading to higher demands in flexibility to counterbalance weather-related fluctuations. This flexibility leads to changing load types with more frequent warm and hot starts, causing uncertainties for the design and the determination of maintenance intervals of bolted flange connections. In this context, results of a recently finished research project and ongoing numerical investigations are presented. Tests were conducted on a model of an IP turbine flange under near-to-service loads, such as internal pressure and temperature, using a test rig allowing heating on the flange's inner surface. Concerning different influences on the stress relaxation behavior, results are shown for tests with martensitic and nickel-based bolted joints. The total test time of 5000 h for each bolted joint consist of 2000 h under steady-state conditions and 3000 h under transient conditions. Comparisons of the results with the martensitic and nickel-based bolted joint show an opposite creep strain distribution in the bolt and flange. In addition, a significant influence of the already existing creep deformation from previous load periods can be observed. Comparative simulations with a modified Graham–Walles creep model are carried out. The results confirm the differences in creep behavior with both bolted joints and reproduce the observed influence of the previous creep deformation.

References

1.
European Committee for Standardization
,
2021
, “
Flanges and Their Joints—Design Rules for Gasketed Circular Flange Connections—Part 1: Calculation
,”
Beuth Verlag GmbH
,
Berlin, Germany
, Standard No. CEN: EN
1591
1
.
2.
European Committee for Standardization
,
2021
, “
Flanges and Their Joints—Gasket Parameters and Test Procedures Relevant to the Design Rules for Gasketed Circular Flange Connections
,”
Beuth Verlag GmbH
,
Berlin
, Germany, Standard No.
CEN: EN 13555.
3.
Verband der TÜV e.V.
,
2017
,
AD 2000-Merkblatt B 8: Berechnung Von Druckbehältern: Flansche
,
Beuth Verlag GmbH
,
Berlin, Germany (in German)
.
4.
The Association of German Engineers (VDI)
,
2003
,
VDI 2230 Part 1 Systematic Calculation of High Duty Bolted Joints
,
Beuth Verlag GmbH
,
Berlin
, Germany (in German).
5.
The Association of German Engineers (VDI)
,
2011
,
VDI 2230 Part 2 Systematic Calculation of High Duty Bolted Joints
,
Beuth Verlag GmbH
,
Berlin
, Germany (in German).
6.
Verband der TÜV e.V.
,
2015
, AD 2000-Merkblatt B 7:
Berechnung Von Druckbehältern: Schrauben
,
Beuth Verlag GmbH
,
Berlin, Germany (in German)
.
7.
ASME
,
2021
, “
ASME Boiler and Pressure Vessel Code (BPVC)
,” Section VIII, Divisions 1/2, 2021, ASME, New York.
8.
ASME
,
2020
, “ASME B16.5 Pipe Flanges and Flanged Fittings: NPS 1/2 Through NPS 24 Metric/Inch Standard,” ASME, New York.
9.
ASME
,
2022
, “ASME B31.1 Power Piping,” ASME, New York.
10.
ASME
,
2020
, “ASME B16.34 Valves—Flanged, Threaded and Welding End,” ASME, New York.
11.
ASME Standards Technology, LLC
,
2010
, “Bolted Flanged Connections in Elevated Temperature Service,” ASME Standards Technology, LLC, New York, Standard No. ASME STP-PT-036.
12.
Maile
,
K.
, and
Klenk
,
A.
,
1999
, “
Numerical Analysis of High Temperature Pipe Flanges
,”
Proceedings of the ASME 1999 PVP Conference, v.382, Analysis of Bolted Joints
,
Boston, MA
, Aug. 1–5, pp.
153
160
.
13.
Purper
,
H.
,
2002
, “
Experimentelle Und Numerische Untersuchung Des Relaxationsverhaltens Von Rohrflanschverbindungen
,” D
issertation, Universität Stuttgart, Stuttgart, Germany
(in German).
14.
Gengenbach
,
T.
,
Roos
,
E.
, and
Klenk
,
A.
,
2003
, “
Relaxation Behaviour of Flanged Joints Consisting of 9% Chromium Steels
,”
Proceedings of the Eighth International Symposium on Advanced Materials
,
Islamabad, Pakistan
, Sept. 8–11, pp.
8
11
.https://inis.iaea.org/search/search.aspx?orig_q=RN:37006889
15.
Gengenbach
,
T.
,
2003
, “
Relaxationsverhalten Von Rohrflanschen Aus 9% Chrom-Stahl
,” Dissertation,
Universität Stuttgart
,
Stuttgart, Germany
(in German).
16.
Leibing
,
B.
,
Hahn
,
P.
, and
Klenk
,
A.
,
2016
, “
Optimized Description of the Relaxation Behavior of Bolted Flange Connections Under Alternating, Near-Service Loads
,” Final Report of the AiF Project No. 17146 N, MPA Stuttgart/IfW Darmstadt,
Stuttgart, Germany
(in German).
17.
Leibing
,
B.
,
Klenk
,
A.
, and
Seidenfuss
,
M.
,
2019
, “
Component Testing and Numerical Calculation of a Bolted High Temperature Power Plant Pipe Flange Connection Under Complex, Near-Service Loads
,”
ASME J. Pressure Vessel Technol.
,
141
(
6
), p.
061201
.10.1115/1.4043996
18.
Leibing
,
B.
,
2019
, “
Untersuchung Des Relaxationsverhaltens Einer Warmgehenden Rohrflansch-Verbindung Unter Anisothermen Beanspruchungen
,” Dissertation,
Universität Stuttgart
,
Stuttgart, Germany
(in German).
19.
Kettler
,
K.
, et al.,
2022
, “
Outage Concepts for Heavy-Duty Flange Joints and Bolted Joints Under Flexible Service Operation
,” Final Report of the AiF Project No. 20088 N, MPA Stuttgart/IfW Darmstadt,
Stuttgart, Germany
(in German).
20.
Schmidt
,
K.
, and
Klenk
,
A.
,
2010
, “
Marcko 700: Werkstoffqualifizierung Für Das 700/720 °C-Kraftwerk
,” Abschlussbericht AVIF A215,
MPA Stuttgart
,
Stuttgart, Germany
(in German).
21.
Berger
,
C.
,
Scholz
,
A.
, and
Schwienheer
,
M.
,
2010
, “
Erarbeitung Und Langzeitige Absicherung Von Auslegungsdaten Für 600 Bis 625/700 °C-Dampfturbinen, Teilprojekt, Erweiterte Betrachtung Des Kriech-, Dehnwechsel- Und Kerbfestigkeitsverhaltens
,” Abschlussbericht, Förderkennzeichen 0327053A, Institut für Werkstoffkunde Fachgebiet Werkstoffkunde, Darmstadt, Germany (in German).
22.
Staubli
,
M.
, et al.,
2006
, “
The European Efforts in Development of New High Temperature Casing Materials—COST 536
,”
Materials for Advanced Power Engineering, Proceedings of the 8th Liège Conference Part II
, Schriften Des Forschungszentrums Jülich, Reihe Energietechnik,
Jülich
, Germany, Sept. 18–20,
J.
Lecomte-Beckers
,
M.
Carton
,
F.
Schubert
, and
P. J.
Ennis
, eds., Vol.
53
, pp.
871
891
.https://www.osti.gov/etdeweb/servlets/purl/21588155
23.
Graham
,
A.
, and
Walles
,
K. F. A.
,
1955
, “
Relationships Between Long- and Short-Time Creep and Tensile Properties of a Commercial Alloy
,”
J. Iron Steel Inst.
,
179
, pp.
104
121
.
24.
Klenk
,
A.
, et al.,
2005
, “
Implementierung Von Fortgeschrittenen Stoffgesetzen in Software-Werkzeuge Zur Berechnung Von Bauteilen Unter Hochtemperaturbeanspruchung
,”
Proceedings of the 28th Lecture Event FVW/FVHT Within VDEh
, Düsseldorf, Germany, Nov. 25, pp.
25
38
(in German).
25.
Ringel
,
M.
, et al.,
2005
, “
Constitutive Equations of Adapted Complexity for High Temperature Loading
,”
ECCC Creep and Fracture Conference
,
London
, UK, Sept. 12–14, pp.
638
648
.
26.
Roos
,
E.
, et al.,
1999
, “
Description of Deformation and Failure Behavior of a Nut-Bolt-Assembly by Means of a Viscoplastic Constitutive Equation
,”
Proceedings of the ASME 1999 PVP Conference
, v.382, Analysis of Bolted Joints,
Boston, MA
, Aug. 1–5, pp.
153
160
.
27.
Xu
,
H.
,
1998
, “
Anwendung Eines Viskoplastischen Schädigungsmodells Zur Beschreibung Des Verformungs- Und Versagensverhaltens Einer Hochtemperatur-Schraubenverbindung
,” D
issertation, Universität Stuttgart
,
Stuttgart, Germany
(in German).
You do not currently have access to this content.