Abstract

The numerical simulation of fluid-structure interactions (FSI) has gained interest to study flow-induced vibrations. Nevertheless, the high computational resources required by such simulations can represent a significant limitation for their application to industrial configurations. Therefore, simplified modeling approaches, when physically applicable, can represent an interesting compromise. This can be the case of slender structures (tubes, rods) often encountered in nuclear power plants. In this paper, an Euler–Bernoulli beam finite element model is implemented inside the computational fluid dynamics (CFD) code code_Saturne. With the goal of finding CFD methods less expensive than large eddy simulations (LES), unsteady Reynolds Navier–Stokes (URANS) and hybrid URANS/LES approaches are considered. The resulting fluid-structure model is able to calculate the vibration response of cantilever beams under a fluid flow, avoiding the necessity of CFD-finite element method (FEM) code coupling. The first part of the paper describes the model and its implementation: it allows to perform 2-way explicit fluid-structure coupling, using the Arbitrary Lagrangian-Eulerian approach to account for the structure deformations. Validation test cases are presented in the second part: first, the model is validated in terms of frequency, added mass, and damping for a cylinder vibrating in static air and water; then, the model is validated toward the vortex-induced resonance and lock-in mechanisms for a cylinder subjected to water cross-flow. The model is then applied to a real experimental configuration of two in-line cylinders in water cross-flow: the calculated vibrations are found to be in good agreement with the experimental measurements.

References

1.
Ahn
,
H. T.
, and
Kallinderis
,
Y.
,
2006
, “
Strongly Coupled Flow/Structure Interactions With a Geometrically Conservative Ale Scheme on General Hybrid Meshes
,”
J. Comput. Phys.
,
219
(
2
), pp.
671
696
.10.1016/j.jcp.2006.04.011
2.
Hay
,
A.
,
Etienne
,
S.
,
Garon
,
A.
, and
Pelletier
,
D.
,
2015
, “
Time-Integration for Ale Simulations of Fluid-Structure Interaction Problems: Stepsize and Order Selection Based on the BDF
,”
Comput. Methods Appl. Mech. Eng.
,
295
, pp.
172
195
.10.1016/j.cma.2015.06.006
3.
Couture-Peck
,
D.
,
Garon
,
A.
, and
Delfour
,
M. C.
,
2020
, “
A New k-TMI/ALE Fluid-Structure Formulation to Study the Low Mass Ratio Dynamics of an Elliptical Cylinder
,”
J. Comput. Phys.
,
422
, p.
109734
.10.1016/j.jcp.2020.109734
4.
Sonawane
,
C.
,
Praharaj
,
P.
,
Pandey
,
A.
,
Kulkarni
,
A.
,
Kotecha
,
K.
, and
Panchal
,
H.
,
2022
, “
Case Studies on Simulations of Flow-Induced Vibrations of a Cooled Circular Cylinder: Incompressible Flow Solver for Moving Mesh Problem
,”
Case Stud. Therm. Eng.
,
34
, p.
102030
.10.1016/j.csite.2022.102030
5.
Longatte
,
E.
,
Bendjeddou
,
Z.
, and
Souli
,
M.
,
2003
, “
Application of Arbitrary Lagrange Euler Formulations to Flow-Induced Vibration Problems
,”
ASME J. Pressure Vessel Technol.
,
125
(
4
), pp.
411
417
.10.1115/1.1613950
6.
Benguigui
,
W.
,
Laviéville
,
J.
, and
Merigoux
,
N.
,
2019
, “
Fluid-Structure Interaction in Two-Phase Flow Using a Discrete Forcing Method
,”
Int. J. Numer. Method Fluids
,
91
, pp.
247
261
.10.1002/fld.4753
7.
Benek
,
J. A.
,
Steger
,
J. L.
, and
F. D.
,
1983
, “
A Flexible Grid Embedding Technique With Application to the Euler Equations
,”
AIAA
Paper No. 83-1944
.10.2514/6.1983-1944
8.
Delcour
,
L.
,
Bral
,
A.
,
Van Langenhove
,
L.
, and
Degroote
,
J.
,
2022
, “
Investigating the Influence of Compressibility on the Second Mode Flutter Instability of a Clamped-Free Cylinder in Axial Flow Using Fluid-Structure Interaction Simulations With the Chimera Technique
,”
J. Fluids Struct.
,
109
, p.
103469
.10.1016/j.jfluidstructs.2021.103469
9.
Mittal
,
S.
, and
Kumar
,
V.
,
1999
, “
Finite Element Study of Vortex-Induced Cross-Flow and In-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
31
(
7
), pp.
1087
1120
.10.1002/(SICI)1097-0363(19991215)31:7%3C1087::AID-FLD911%3E3.0.CO;2-C
10.
Longatte
,
E.
,
Bendjeddou
,
Z.
, and
Souli
,
M.
,
2003
, “
Methods for Numerical Study of Tube Bundle Vibrations in Cross-Flows
,”
J. Fluids Struct.
,
18
(
5
), pp.
513
528
.10.1016/j.jfluidstructs.2003.08.010
11.
Papaioannou
,
G.
,
Yue
,
D.
,
Triantafyllou
,
M.
, and
Karniadakis
,
G.
,
2008
, “
On the Effect of Spacing on the Vortex-Induced Vibrations of Two Tandem Cylinders
,”
J. Fluids Struct.
,
24
(
6
), pp.
833
854
.10.1016/j.jfluidstructs.2007.11.006
12.
Zhao
,
M.
, and
Cheng
,
L.
,
2012
, “
Numerical Simulation of Vortex-Induced Vibration of Four Circular Cylinders in a Square Configuration
,”
J. Fluids Struct.
,
31
, pp.
125
140
.10.1016/j.jfluidstructs.2012.04.002
13.
Gohel
,
H. R.
,
Shah
,
B. A.
, and
Lakdawala
,
A. M.
,
2013
, “
Numerical Investigation of Flow Induced Vibration for the Triangular Array of Circular Cylinder
,”
Proc. Eng.
,
51
, pp.
644
649
.10.1016/j.proeng.2013.01.091
14.
Tang
,
D.
,
Bao
,
S.
,
Luo
,
L.
,
Zhu
,
H.
, and
Cui
,
H.
,
2019
, “
A CFD/CSD Coupled Method With High Order and Its Applications in Flow Induced Vibrations of Tube Arrays in Cross Flow
,”
Ann. Nucl. Energy
,
130
, pp.
347
356
.10.1016/j.anucene.2019.03.003
15.
Athar Khan
,
M.
,
Masood
,
S.
,
Anwer
,
S. F.
,
Khan
,
S. A.
, and
Arif
,
M. R.
,
2023
, “
Vortex Induced Vibration for Mixed Convective Flow Past a Square Cylinder
,”
Int. J. Heat Mass Transfer
,
202
, p.
123722
.10.1016/j.ijheatmasstransfer.2022.123722
16.
Xiong
,
Y.
,
Peng
,
S.
,
Zhang
,
M.
, and
Yang
,
D.
,
2019
, “
Numerical Study on the Vortex-Induced Vibration of a Circular Cylinder in Viscoelastic Fluids
,”
J. Non-Newtonian Fluid Mech.
,
272
, p.
104170
.10.1016/j.jnnfm.2019.104170
17.
Sadek
,
O.
,
Mohany
,
A.
, and
M
,
H.
,
2020
, “
Numerical Simulation of Streamwise Fluidelastic Instability of Tube Bundles Subjected to Two-Phase Cross Flow
,”
J. Fluids Struct.
,
92
, p.
102816
.10.1016/j.jfluidstructs.2019.102816
18.
Zhang
,
M.
,
Wang
,
X.
, and
Oiseth
,
O.
,
2022
, “
Numerical Simulation and Modeling Convention of Unsteady Fluidelastic Forces of Tube Arrays
,”
ASME J. Pressure Vessel Technol.
,
144
(
2
), p.
024503
.10.1115/1.4052694
19.
Chen
,
L.
, and
Wu
,
G.
,
2022
, “
Vortex-Induced Three-Degree-of-Freedom Vibration of a Piggyback Circular Cylinder System
,”
Appl. Ocean Res.
,
123
, p.
103145
.10.1016/j.apor.2022.103145
20.
Shinde
,
V.
,
Marcel
,
T.
,
Hoarau
,
Y.
,
Deloze
,
T.
,
Harran
,
G.
,
Baj
,
F.
,
Cardolaccia
,
J.
,
Magnaud
,
J. P.
,
Longatte
,
E.
, and
Braza
,
M.
,
2014
, “
Numerical Simulation of the Fluid-Structure Interaction in a Tube Array Under Cross Flow at Moderate and High Reynolds Number
,”
J. Fluids Struct.
,
47
, pp.
99
113
.10.1016/j.jfluidstructs.2014.02.013
21.
Shinde
,
V.
,
Longatte
,
E.
, and
Baj
,
F.
,
2018
, “
Large Eddy Simulation of Fluid-Elastic Instability in Square Normal Cylinder Array
,”
ASME J. Pressure Vessel Technol.
,
140
(
4
), p.
041301
.10.1115/1.4040417
22.
Berland
,
J.
,
Deri
,
E.
, and
Adobes
,
A.
,
2014
, “
Large-Eddy Simulation of Cross-Flow Induced Vibrations of a Single Flexible Tube in a Normal Square Tube Array
,”
ASME
Paper No. PVP2014-28369.10.1115/PVP2014-28369
23.
Berland
,
J.
,
Deri
,
E.
, and
Adobes
,
A.
,
2016
, “
Investigation of Cross-Flow induced vibrations in a Normal Square Tube Array by Means of Large-Eddy Simulations for Tube Damage Risk Assessment
,”
Proceedings of Computational Fluid Dynamics for Nuclear Reactor Safety Applications-6 (CFD4NRS-6)
,
Cambridge
, MA, Sept.
13
15
.
24.
Benhamadouche
,
S.
, and
Benguigui
,
W.
,
2023
, “
Wall-Resolved LES and low-Reynolds Number URANS Combined to an Arbitrary Lagrangian Eulerian Approach for Predicting Water Cross-Flow Induced Vibrations of a Single Flexible Tube in a Normal Square Tube Array
,”
Proceedings of NURETH-20
,
Washington
, DC, Aug.
20
25
.
25.
Vivaldi
,
D.
, and
Baccou
,
J.
,
2023
, “
URANS and Hybrid URANS/LES Coupled Fluid-Structure Simulations of Fluid-Induced Vibrations in a Square-Pitch Tube Bundle Subjected to Water Cross-Flows
,”
Proceedings of NURETH-20
,
Washington
, DC, Aug.
20
25
.10.13182/NURETH20-40535
26.
Ter Hofstede
,
E.
,
Shams
,
A.
, and
van Zuijlen
,
A.
,
2015
, “
Numerical Prediction of Flow Induced Vibrations in Nuclear Reactor Applications
,”
Conference: 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16)
,
Chicago
, IL, Aug. 30–Sept. 4, pp.
7725
7735
. https://glc.ans.org/nureth-16/data/papers/13196.pdf#page=1
27.
Xu
,
B.
,
Wang
,
H.
,
Deng
,
Y.
,
Shen
,
X.
,
Geng
,
L.
,
Liu
,
K.
, and
Zhang
,
D.
,
2022
, “
Nonlinear Vortex Dynamic Analysis of Flow-Induced Vibration of a Flexible Splitter Plate Attached to a Square Cylinder
,”
Ocean Eng.
,
264
, p.
112433
.10.1016/j.oceaneng.2022.112433
28.
Ter Hofstede
,
E.
,
Kottapalli
,
S.
, and
Shams
,
A.
,
2017
, “
Numerical Prediction of Flow Induced Vibrations in Nuclear Reactor Applications
,”
Nucl. Eng. Des.
,
319
, pp.
81
90
.10.1016/j.nucengdes.2017.04.026
29.
De Santis
,
D.
, and
Shams
,
A.
,
2017
, “
Numerical Modeling of Flow Induced Vibration of Nuclear Fuel Rods
,”
Nucl. Eng. Des.
,
320
, pp.
44
56
.10.1016/j.nucengdes.2017.05.013
30.
Lagrange
,
R.
,
Puscas
,
M. A.
,
Piteau
,
P.
,
Delaune
,
X.
, and
Antunes
,
J.
,
2022
, “
Modal Added-Mass Matrix of an Elongated Flexible Cylinder Immersed in a Narrow Annular Fluid, Considering Various Boundary Conditions. New Theoretical Results and Numerical Validation
,”
J. Fluids Struct.
,
114
, p.
103754
.10.1016/j.jfluidstructs.2022.103754
31.
Feng
,
Z.
,
Jiang
,
N.
,
Zang
,
F.
,
Zhang
,
Y.
,
Huang
,
X.
, and
Wu
,
W.
,
2016
, “
Nonlinear Characteristics Analysis of Vortex-Induced Vibration for a Three-Dimensional Flexible Tube
,”
Commun. Nonlinear Sci. Numer. Simul.
,
34
, pp.
1
11
.10.1016/j.cnsns.2015.10.007
32.
Brockmeyer
,
L.
,
Merzari
,
E.
,
Solberg
,
J.
,
Karazis
,
K.
, and
Hassan
,
Y.
,
2019
, “
High Fidelity Simulation and Validation of Crossflow Through a Tube Bundle and the Onset of Vibration
,”
Int. J. Non-Linear Mech.
,
117
, p.
103231
.10.1016/j.ijnonlinmec.2019.07.016
33.
Liu
,
Z.
,
Liu
,
Y.
, and
Lu
,
J.
,
2012
, “
Fluid-Structure Interaction of Single Flexible Cylinder in Axial Flow
,”
Comput. Fluids
,
56
, pp.
143
151
.10.1016/j.compfluid.2011.12.003
34.
Liu
,
Z.
,
Liu
,
Y.
, and
Lu
,
J.
,
2013
, “
Numerical Simulation of the Fluid-Structure Interaction for Two Simple Fuel Assemblies
,”
Nucl. Eng. Des.
,
258
, pp.
1
12
.10.1016/j.nucengdes.2013.01.029
35.
Kumar
,
J.
, and
Sriram
,
V.
,
2020
, “
Development of a Hybrid Model Based on Mesh and Meshfree Methods and Its Application to Fluid-Elastic Structure Interaction for Free Surface Waves
,”
J. Fluids Struct.
,
99
, p.
103159
.10.1016/j.jfluidstructs.2020.103159
36.
Baraglia
,
F.
,
Benguigui
,
W.
, and
Denefle
,
R.
,
2021
, “
A Corotational Finite Element Approach Coupled to a Discrete Forcing Method to Solve Hyperelastic Deformation Induced by Two-Phase Flow
,”
J. Fluids Struct.
,
107
, p.
103403
.10.1016/j.jfluidstructs.2021.103403
37.
Logan
,
D. L.
,
2007
,
A First Course in the Finite Element Method
, 4th ed.,
Thomson
,
Toronto, ON, Canada
.
38.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
39.
Vivaldi
,
D.
,
2022
, “
Fluid-Structure Simulations of Vortex Shedding Induced Vibrations on Two in-Line Cylinders in Water Cross-Flow
,”
ASME
Paper No. PVP2022-81751.10.1115/PVP2022-81751
40.
Chen
,
S.
, and
Wambsganss
,
M.
,
1974
, “
Design Guide for Calculating Natural Frequencies of Straight and Curved Beams on Multiple Supports
,”
Argonne National Laboratory
,
Lemont, IL
, Report No. ANL-CT-74-06.
41.
Gao
,
Z.
,
Efthymiou
,
M.
,
Cheng
,
L.
,
Zhou
,
T.
,
Minguez
,
M.
, and
Zhao
,
W.
,
2020
, “
Hydrodynamic Damping of a Circular Cylinder at Low KC: Experiments and an Associated Model
,”
Mar. Struct.
,
72
, p.
102777
.10.1016/j.marstruc.2020.102777
42.
Bolshukhin
,
M. A.
,
Budnikov
,
A. V.
,
Shmelev
,
E. I.
,
Kulikov
,
D. A.
,
Loginov
,
A. V.
,
Pribaturin
,
N. A.
,
Lobanov
,
P. D.
,
Meledin
,
V. G.
,
Suvorov
,
A. S.
, and
Stulenkov
,
A. V.
,
2021
, “
Dynamic Measurements of the Flow and Structure Oscillations to Validate FSI Calculations
,”
Nucl. Eng. Des.
,
381
, p.
111336
.10.1016/j.nucengdes.2021.111336
43.
King
,
R.
,
1977
, “
A Review of Vortex Shedding Research and Its Application
,”
Ocean Eng.
,
4
(
3
), pp.
141
171
.10.1016/0029-8018(77)90002-6
44.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
45.
Megson
,
T. H. G.
,
2005
,
Structural and Stress Analysis
, 2nd ed.,
Elsevier Butterworth-Heinemann
,
Oxford, UK
.
46.
NEA
,
2023
, “
The Fluid-Structure Interaction (FSI) Benchmark Based on OKBM Experiments to Validate Coupled Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) Calculations
,” Nuclear Safety NEA/CSNI/R, 2,
Washington, DC
.
47.
Gritskevich
,
M.
,
Garbaruk
,
A.
,
Schutze
,
J.
, and
Menter
,
F.
,
2012
, “
Development of DDES and IDDES Formulations for the k−ω Shear Stress Transport Model
,”
Flow Turbul. Combust.
,
88
(
3
), pp.
431
449
.10.1007/s10494-011-9378-4
48.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
J. Flow, Turbul. Combust.
,
85
(
1
), pp.
113
138
.10.1007/s10494-010-9264-5
You do not currently have access to this content.