Abstract

Welding of thick low alloy steel components without elevated preheat imposes rapid cooling rates that may promote martensite formation in the coarse-grained heat affected zone (CGHAZ). Freshly formed martensite contains a distorted and supersaturated matrix with high dislocation densities. As a result, impact toughness properties of these regions are inherently low and postweld tempering procedures are typically required. Conventional postweld heat treatment (PWHT) involves extended isothermal holds at elevated temperature, which allows for considerable softening of the martensitic structure but has been found to have less effect on improving impact toughness. In contrast, short-term tempering processes with rapid heating and cooling rates and short exposures to elevated temperatures have been shown to greatly improve impact toughness through a shift in the kinetics of martensite tempering that produces high number densities of refined carbides. Temper bead welding (TBW) was developed for in-service repair of thick steel components where PWHT is impractical or not possible. With TBW, the heat-affected zone is tempered by one or more rapid reheat cycles from overlapping weld beads or weld layers. This study compares the Charpy V-notch (CVN) impact toughness and fracture morphology of the CGHAZ in the as-welded condition, with conventional PWHT, with a single TBW reheat and with multiple TBW reheats for an SA-387 Grade 22 alloy steel.

References

1.
Bhadeshia
,
H.
, and
Honeycombe
,
R.
,
2017
,
Steels: Microstructure and Properties
,
Elsevier Ltd
.,
Butterworth-Heinemann, Oxford, UK
.
2.
Parker
,
J. D.
,
2005
,
Grade 22 Low Alloy Steel Handbook
,
EPRI
,
Palo Alto, CA
.
3.
Lippold
,
J. C.
,
2015
,
Welding Metallurgy and Weldability
,
Wiley Inc
.,
Hoboken, NJ
.
4.
ASME BPVC.IX, QW-290 QW-462
,
2023
, “
American Society of Mechanical Engineers Boiler and Pressure Vessel Code
,”
ASME
,
New York
.
5.
ASME BPVC.XI, IWA 4600
,
2023
, “
American Society of Mechanical Engineers Boiler and Pressure Vessel Code
,”
ASME
,
New York
.
6.
Porter
,
D. A.
, and
Easterling
,
K. E.
,
1992
,
Phase Transformations in Metals and Alloys
,
Chapman & Hall
,
London, UK
.
7.
Yu
,
L.
,
Nakabayashi
,
Y.
,
Sasa
,
M.
,
Itoh
,
S.
,
Kameyama
,
M.
,
Hirano
,
S.
,
Chigusa
,
N.
,
Saida
,
K.
,
Mochizuki
,
M.
, and
Nishimoto
,
K.
,
2011
, “
Neural Network Prediction of Hardness in HAZ of Temper Bead Welding Using the Proposed Thermal Cycle Tempering Parameter (TCTP)
,”
ISIJ Int.
,
51
(
9
), pp.
1506
1515
.10.2355/isijinternational.51.1506
8.
Sarich
,
C.
,
2021
, “
Stress Relief Cracking in Low Alloy Creep Resistant Steels
,”
Ph.D. dissertation
,
Ohio State University
,
Columbus, OH
.http://rave.ohiolink.edu/etdc/view?acc_num=osu1626969215665096
9.
Stewart
,
J.
, and
Alexandrov
,
B.
,
2021
, “
Quantification of the Hardness Response in the Heat-Affected Zone of Low Alloy Steels Subjected to Temper Bead Welding
,”
J. Manuf. Processes
,
66
, pp.
325
340
.10.1016/j.jmapro.2021.04.008
10.
Revilla
,
C.
,
López
,
B.
, and
Rodriguez-Ibabe
,
J. M.
,
2014
, “
Carbide Size Refinement by Controlling the Heating Rate During Induction Tempering in a Low Alloy Steel
,”
Mater. Des.
,
62
, pp.
296
304
.10.1016/j.matdes.2014.05.053
11.
Euser
,
V. K.
,
Williamson
,
D. L.
,
Clarke
,
K. D.
,
Findley
,
K. O.
,
Speer
,
J. G.
, and
Clarke
,
A. J.
,
2021
, “
Effects of Short-Time Tempering on Impact Toughness, Strength, and Phase Evolution of 4340 Steel Within the Tempered Martensite Embrittlement Regime
,”
Metall. Mater. Trans. A
,
50
(
8
), pp.
3654
3662
.10.1007/s11661-019-05271-4
12.
ASME BPVC.II.A, SA-370
,
2023
, “
American Society of Mechanical Engineers Boiler and Pressure Vessel Code
,”
ASME
,
New York
.
13.
Smith
,
B.
,
2021
, “
The Correlation of Hardness to Toughness and the Superior Impact Properties of Martensite in Pressure Vessel Steels Applied to Temper Bead Qualification
,”
Ph.D. dissertation
,
Ohio State University
,
Coloumbus, OH
.https://www.proquest.com/openview/aa5af46bc93cee2efcd050a8cb73809f/1?pqorigsite=gscholar&cbl=18750&diss=y
14.
Hanamura
,
T.
,
Yin
,
F.
, and
Naga
,
K.
,
2004
, “
Ductile-Brittle Transition Temperature of Ultrafine Ferrite/Cementite Microstructure in a Low Carbon Steel Controlled by Effective Grain Size
,”
ISIJ Int.
,
44
(
3
), pp.
610
617
.10.2355/isijinternational.44.610
15.
Yang
,
Z.
,
Liu
,
Z.
,
He
,
X.
,
Qiao
,
S.
, and
Xie
,
C.
,
2018
, “
Effect of Microstructure on the Impact Toughness and Temper Embrittlement of SA508Gr.4N Steel for Advanced Pressure Vessel Materials
,”
Sci. Rep.
,
8
(
1
), p.
207
.10.1038/s41598-017-18434-3
16.
Saha
,
D. C.
,
Biro
,
E.
,
Gerlich
,
A. P.
, and
Zhou
,
Y.
,
2016
, “
Effects of Tempering Mode on the Structural Changes of Martensite
,”
Mater. Sci. Eng. A
,
673
, pp.
467
475
.10.1016/j.msea.2016.07.092
17.
Bhattacharyya
,
V. E.
,
1979
,
Fracture Handbook: Failure Analysis of Metallic Materials by Scanning Electron Microscopy
,
IIT Research Institute
,
Chicago, IL
.
18.
Krauss
,
G.
,
2017
, “
Tempering of Lath Martensite in Low and Medium Carbon Steels: Assessment and Challenges
,”
Steel Res. Int.
,
88
(
10
), p.
1700038
.10.1002/srin.201700038
19.
Li
,
Z.
,
Xiao
,
N.
,
Li
,
D.
,
Zhang
,
J.
,
Luo
,
Y.
, and
Zhang
,
R.
,
2014
, “
Effect of Microstructure Evolution on Strength and Impact Toughness of G18CrMo2-6 Heat-Resistant Steel During Tempering
,”
Mater. Sci. Eng.: A
,
604
, pp.
103
110
.10.1016/j.msea.2014.03.013
20.
Shen
,
D.-D.
,
Song
,
S. H.
,
Yuan
,
Z. X.
, and
Weng
,
L. Q.
,
2005
, “
Effect of Solute Grain Boundary Segregation and Hardness on the Ductile-to-Brittle Transition for a Cr–Mo Low-Alloy Steel
,”
Mater. Sci. Eng.: A
,
394
(
1–2
), pp.
53
59
.10.1016/j.msea.2004.10.036
21.
Tanguy
,
B.
,
Besson
,
J.
,
Piques
,
R.
, and
Pineau
,
A.
,
2005
, “
Ductile to Brittle Transition of an A508 Steel Characterized by Charpy Impact Test
,”
Eng. Fract. Mech.
,
72
(
1
), pp.
49
72
.10.1016/j.engfracmech.2004.03.010
22.
Jang
,
E.
,
Luo
,
Y.
,
Alexandrov
,
B. T.
,
McCracken
,
S.
,
Barborak
,
D.
, and
Tatman
,
J.
,
2022
, “
Quantification of the Tempering Response for Temper Bead Welding of SA-508 Low Alloy Steel
,”
ASME
Paper No. PVP2022-84884.10.1115/PVP2022-84884
You do not currently have access to this content.