Abstract

The structural safety of the cylinder in liquid-cooled fast reactors is significantly affected by high-temperature thermal striping on the cylinder wall due to the free level fluctuation. Based on the elevated-temperature creep-fatigue evaluation theory of the RCC-MRx rules, combined with the finite element and numerical heat transfer analysis methods, a thermal analysis method appropriate for the fast reactor cylinder containing hypothetical cracks after being subjected to normal transient loads was established. The proposed model is validated compared with the test reactors, FAENA and SUPERSOMITE, and the calculated thermal striping limits agree with the experimental data. Furthermore, the involved model was implemented to predict the thermal striping limits for several ideal normal transients. Simultaneously, the effects of some key parameters, including the frequency, the heat transfer coefficient, wall thickness, and the mean temperature of the fluid on the thermal striping limit of the SS316 stainless steel cylinder were studied.

References

1.
Chetal
,
S. C.
,
2010
, “
Impact of Fast Reactors Operating Experience on PFBR Design to Enhance Safety
,”
IAEA–GIF Workshop on Operational and Safety Aspects of Sodium Cooled Fast Reactors
, Vienna,
Austria, June 23–25
, No. 49104072.https://www.osti.gov/etdeweb/biblio/22753035
2.
Tanaka
,
M.
,
2014
, “
Investigation of V&V Process for Thermal Fatigue Issue in a Sodium Cooled Fast Reactor–Application of Uncertainty Quantification Scheme in Verification and Validation With Fluid-Structure Thermal Interaction Problem in T-Junction Pipe System
,”
Nucl. Eng. Des.
,
279
, pp.
91
103
.10.1016/j.nucengdes.2014.03.006
3.
Chellapandi
,
P.
,
Chetal
,
S. C.
, and
Raj
,
B.
,
2009
, “
Thermal Striping Limits for Components of Sodium Cooled Fast Spectrum Reactors
,”
Nucl. Eng. Des.
,
239
(
12
), pp.
2754
2765
.10.1016/j.nucengdes.2009.08.014
4.
Lee
,
H.
,
Kim
,
J.
, and
Park
,
H.
,
2012
, “
High Temperature Design and Damage Evaluation of MOD.9Cr-1Mo Steel Heat Exchanger
,”
ASME J. Pressure Vessel Technol.
,
134
(
5
), p.
051101
.10.1115/1.4005938
5.
Picker
,
C.
,
1996
, “
UK Development of a Strain Based Creep-Fatigue Assessment Procedure for Fast Reactor Design
,” Creep-Fatigue Damage Rules for Advanced Fast Reactor Design. Technical Committee Meeting,
Manchester, UK
,
June 11–13
, Paper No.
IAEA-TECDOC-933
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/042/28042997.pdf
6.
Paffumi
,
E.
,
Radu
,
V.
, and
Nilsson
,
K. F.
,
2013
, “
Thermal Fatigue Striping Damage Assessment From Simple Screening Criterion to Spectrum Loading Approach
,”
Int. J. Fatigue
,
53
, pp.
92
104
.10.1016/j.ijfatigue.2012.01.001
7.
Qian
,
S.
, and
Kasahara
,
N.
,
2015
, “
Large Eddy Simulation Analysis of Fluid Temperature Fluctuations at a T-Junction for Prediction of Thermal Loading
,”
ASME J. Pressure Vessel Technol.
,
137
(
1
), p.
011303
.10.1115/1.4028067
8.
Qian
,
S.
,
Frith
,
J.
, and
Kasahara
,
N.
,
2015
, “
Classification of Flow Patterns in Angled T-Junctions for the Evaluation of High Cycle Thermal Fatigue
,”
ASME J. Pressure Vessel Technol.
,
137
(
2
), p.
021301
.10.1115/1.4027903
9.
Wang
,
Y.
,
Wang
,
M.
,
Jia
,
K.
,
Tian
,
W.
,
Qiu
,
S.
, and
Su
,
G.
,
2022
, “
Thermal Fatigue Analysis of Structures Subjected to Liquid Metal Jets at Different Temperatures in the Gen-IV Nuclear Energy System
,”
Energy
,
256
, p.
124681
.10.1016/j.energy.2022.124681
10.
Jung
,
Y.
,
Choi
,
S. R.
, and
Hong
,
J.
,
2022
, “
Numerical Analysis of Temperature Fluctuation Characteristics Associated With Thermal Striping Phenomena in the PGSFR
,”
Nucl. Eng. Technol.
,
54
(
10
), pp.
3928
3942
.10.1016/j.net.2022.05.015
11.
Wiser
,
R.
,
Bays
,
S. E.
, and
Yoon
,
S. J.
,
2021
, “
Thermal-Striping Analysis Methodology for Sodium-Cooled Reactor Design
,”
Int. J. Heat Mass Transfer
,
175
, p.
121321
.10.1016/j.ijheatmasstransfer.2021.121321
12.
Xueyao
,
X.
,
Guo-Yan
,
Z.
,
Shan-Tung
,
T.
, and
Xing
,
L.
,
2019
, “
Numerical Analysis of Thermal Striping Induced Transient Temperature Distribution Inside Central Column Structure
,”
International Conference on Applied Energy
,
Västerås, Sweden
,
Aug. 12–15
, p.
696
.10.46855/energy-proceedings-2062
13.
Kamaya
,
M.
, and
Miyoshi
,
K.
,
2017
, “
Thermal Fatigue Damage Assessment at Mixing Tees (Elastic-Plastic Deformation Effect on Stress and Strain Fluctuations)
,”
Nucl. Eng. Des.
,
318
, pp.
202
212
.10.1016/j.nucengdes.2017.04.022
14.
Kuutti
,
J.
, and
Virkkunen
,
I.
,
2019
, “
The Effect of Subsurface Crack Opening on the Stress Intensity Factor Under Cyclic Thermal Loads
,”
Eng. Fract. Mech.
,
218
, p.
106600
.10.1016/j.engfracmech.2019.106600
15.
Kamaya
,
M.
,
2011
, “
Crack Growth Under High-Cycle Thermal Fatigue Loading: Effects of Stress Gradient and Relaxation in a Crack Network
,”
ASME J. Pressure Vessel Technol.
,
133
(
6
), p.
061203
.10.1115/1.4004560
16.
Kim
,
S.-H.
,
Huh
,
N.-S.
,
Kim
,
M.-K.
,
Cho
,
D.-G.
,
Choi
,
Y.-H.
,
Lee
,
J.-H.
, and
Choi
,
J.-B.
,
2013
, “
Hydro-Thermo-Mechanical Analysis on High Cycle Thermal Fatigue Induced by Thermal Striping in a T-Junction
,”
J. Mech. Sci. Technol.
,
27
(
10
), pp.
3087
3095
.10.1007/s12206-013-0827-y
17.
Ando
,
M.
,
Hirose
,
Y.
, and
Takano
,
M.
,
2021
, “
Assessment of Failure Life Evaluation Methods for Structural Discontinuities With Fatigue and Creep-Fatigue Tests on Multiperforated Plate Made of Mod. 9Cr-1Mo Steel
,”
ASME J. Pressure Vessel Technol.
,
143
(
6
), p.
061505
.10.1115/1.4051398
18.
Dougdag
,
M.
,
Fernandez
,
R.
, and
Lamberts
,
D.
,
2017
, “
Risk Assessment of Thermal Striping in MYRRHA Research Reactor
,”
Nucl. Eng. Des.
,
319
, pp.
40
47
.10.1016/j.nucengdes.2017.04.031
19.
Dougdag
,
M.
,
Fernandez
,
R.
, and
Lamberts
,
D.
,
2022
, “
Risk Reassessment of Thermal Striping Due to a Macro-Crack Pre-Existent in Nuclear Reactors at High Temperature
,”
Ann. Nucl. Energy
,
174
, p.
109152
.10.1016/j.anucene.2022.109152
20.
Dougdag
,
M.
,
Fernandez
,
R.
, and
Lamberts
,
D.
,
2022
, “
Comparison of Lifetime Assessments Between ASME and RCC-Mrx in Liquid Metal Nuclear Research Reactors Surfing From Thermal Striping
,”
Nucl. Eng. Des.
,
398
, p.
111988
.10.1016/j.nucengdes.2022.111988
21.
Zheng
,
S.
,
Lu
,
D.
,
Cao
,
Q.
, and
Ding
,
Y.
,
2020
, “
Cladding Design on Lower Head of the Central Measuring Shroud in a Fast Reactor Against Thermal Striping
,”
Nucl. Eng. Des.
,
357
, p.
110389
.10.1016/j.nucengdes.2019.110389
22.
Qayyum
,
F.
,
Shah
,
M.
,
Shakeel
,
O.
,
Mukhtar
,
F.
,
Salem
,
M.
, and
Rezai-Aria
,
F.
,
2016
, “
Numerical Simulation of Thermal Fatigue Behavior in a Cracked Disc of AISI H-11 Tool Steel
,”
Eng. Failure Anal.
,
62
, pp.
242
253
.10.1016/j.engfailanal.2016.01.015
23.
Paffumi
,
E.
,
Nilsson
,
K. F.
, and
Szaraz
,
Z.
,
2015
, “
Experimental and Numerical Assessment of Thermal Fatigue in 316 Austenitic Steel Pipes
,”
Eng. Failure Anal.
,
47
, pp.
312
327
.10.1016/j.engfailanal.2014.01.010
24.
RCC-MRx
,
2012
, “
RCC-MRx Section I Subsection B, 1st Addendum, Class 1: N1RX Reactor Components Its Auxiliary Systems and Supports
,” AFCEN, Paris, France.
25.
Sih
,
G. C.
,
1973
,
Methods of Analysis and Solutions of Crack Problems
,
Springer Science and Business Media
,
Leyden, The Netherlands
.
26.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
1973
,
The Stress Analysis of Cracks Handbook
, 2nd ed.,
Del Research Corporation
,
St. Louis, MO
.
27.
Barsom
,
J. M., and Rolfe, S. T.
,
1987
,
Fracture and Fatigue Control in Structures
, 2nd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
28.
RCC-M E
,
2007
, “
Design and Construction Rules for Mechanical Components of PWR Nuclear Islands, Section I, Subsection B: Class 1
,”
AFCEN
,
Paris, France
.
29.
Maillot
,
V.
,
2003
,
Amorçage Et Propagation De RÉSeaux De Fissures De Fatigue Thermique Dans Un Acier Inoxydable AustÉNitique De Type X2 Crni18-09 (AISI 304 L)
, Ecole centrale de Lille,
Lille, France
.
30.
Poette
,
C.
,
1998
, “
CEA R&D Experimental Programmes Related to Thermomechanics and Fracture Mechanics for Fast Reactors
,”
Final IAEA Meeting on Thermal Striping Benchmark
, Vienna, Austria, Aug. 6–13, Paper No. IAEA-TECDOC-1318.
31.
Lewis
,
M. W. J.
,
Harrison
,
M.
, and
Tong
,
D. K. W.
,
1988
, “
SUPERSOMITE-A Large Test Facility for the Study of Thermal Striping in Liquid Metal Fast Breeder Reactors
,”
Liq. Met. Eng. Technol.
,
2
, pp. 426.1–426.10.https://inis.iaea.org/search/search.aspx?orig_q=RN:21068314
You do not currently have access to this content.