Abstract

Vision-based methods have shown great potential in vibration-based structural health monitoring (SHM), which can be classified as target-based and target-free methods. However, target-based methods cannot achieve subpixel accuracy, and target-free methods are sensitive to environmental effects. To this end, this paper proposed a hybrid perspective of vision-based methods for estimating structural displacements, based on Mask region-based convolutional neural networks (Mask R-CNNs). In proposed methods, Mask R-CNN is used to first locate the target region and then target-free vision-based methods are used to estimate structural displacements from the located target. The performances of proposed methods were validated in a shaking table test of a cold formed steel (CFS) wall system. It can be seen that Mask R-CNN can significantly improve the accuracy of feature point matching results of the target-free method. The comparisons of estimated structural displacements using proposed methods are conducted and detailed into accuracy, stability, and computational burden, to guide the selection of the proper proposed method for the specific problem in vibration-based SHM. Proposed methods can also achieve even 1/15 pixel-level accuracy. Moreover, different image denoising methods in different lighting conditions are compared.

References

1.
Eltouny
,
K. A.
, and
Liang
,
X.
,
2023
, “
Large-Scale Structural Health Monitoring Using Composite Recurrent Neural Networks and Grid Environments
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
38
(
3
), pp.
271
287
.10.1111/mice.12845
2.
Zhu
,
Q.
,
Cui
,
D.
,
Zhang
,
Q.
, and
Du
,
Y.
,
2022
, “
A Robust Structural Vibration Recognition System Based on Computer Vision
,”
J. Sound Vib.
,
541
, p.
117321
.10.1016/j.jsv.2022.117321
3.
Hou
,
R.
, and
Xia
,
Y.
,
2021
, “
Review on the New Development of Vibration-Based Damage Identification for Civil Engineering Structures: 2010–2019
,”
J. Sound Vib.
,
491
, p.
115741
.10.1016/j.jsv.2020.115741
4.
Kamariotis
,
A.
,
Chatzi
,
E.
, and
Straub
,
D.
,
2023
, “
A Framework for Quantifying the Value of Vibration-Based Structural Health Monitoring
,”
Mech. Syst. Signal Process.
,
184
, p.
109708
.10.1016/j.ymssp.2022.109708
5.
Huang
,
J.
,
Li
,
D.
,
Zhang
,
C.
, and
Li
,
H.
,
2019
, “
Improved Kalman Filter Damage Detection Approach Based on lp Regularization
,”
Struct. Control Health Monit.
,
26
(
10
), p.
e2424
.10.1002/stc.2424
6.
Wei
,
D.
,
Li
,
D.
,
Cai
,
E.
,
Huang
,
J.
, and
Guo
,
X.
,
2023
, “
Structural Damage Identification With Unknown External Inputs Based on the Sparse Constraint
,”
Smart Mater. Struct.
,
32
(
8
), p.
084001
.10.1088/1361-665X/acdba4
7.
Xu
,
Y.
,
Luo
,
Y.
, and
Zhang
,
J.
,
2022
, “
Laser-Scan Based Pose Monitoring for Guiding Erection of Precast Concrete Bridge Piers
,”
Autom. Constr.
,
140
, p.
104347
.10.1016/j.autcon.2022.104347
8.
Zhang
,
J.
,
Zhou
,
L.
,
Tian
,
Y.
,
Yu
,
S.
,
Zhao
,
W.
, and
Cheng
,
Y.
,
2022
, “
Vortex-Induced Vibration Measurement of a Long-Span Suspension Bridge Through Noncontact Sensing Strategies
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
37
(
12
), pp.
1617
1633
.10.1111/mice.12712
9.
Ma
,
Z.
,
Choi
,
J.
, and
Sohn
,
H.
,
2022
, “
Real-Time Structural Displacement Estimation by Fusing Asynchronous Acceleration and Computer Vision Measurements
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
37
(
6
), pp.
688
703
.10.1111/mice.12767
10.
Yang
,
Y.
,
Dorn
,
C.
,
Mancini
,
T.
,
Talken
,
Z.
,
Kenyon
,
G.
,
Farrar
,
C.
, and
Mascareñas
,
D.
,
2017
, “
Blind Identification of Full-Field Vibration Modes From Video Measurements With Phase-Based Video Motion Magnification
,”
Mech. Syst. Signal Process.
,
85
, pp.
567
590
.10.1016/j.ymssp.2016.08.041
11.
Dong
,
C.
, and
Catbas
,
F. N.
,
2021
, “
A Review of Computer Vision–Based Structural Health Monitoring at Local and Global Levels
,”
Struct. Health Monit.
,
20
(
2
), pp.
692
743
.10.1177/1475921720935585
12.
Cheng
,
Y.
,
Lin
,
F.
,
Wang
,
W.
, and
Zhang
,
J.
,
2022
, “
Vision-Based Trajectory Monitoring for Assembly Alignment of Precast Concrete Bridge Components
,”
Autom. Constr.
,
140
, p.
104350
.10.1016/j.autcon.2022.104350
13.
Chabrier
,
R.
,
Sadoulet Reboul
,
E.
,
Chevallier
,
G.
,
Foltête
,
E.
, and
Jeannin
,
T.
,
2021
, “
Full-Field Measurements With Digital Image Correlation for Vibro-Impact Characterisation
,”
Mech. Syst. Signal Process.
,
156
, p.
107658
.10.1016/j.ymssp.2021.107658
14.
Ji
,
X.
,
Gao
,
X.
,
Zhuang
,
Y.
, and
Qu
,
Z.
,
2023
, “
Enhanced Measurements of Structural Inter-Story Drift Responses in Shaking Table Tests
,”
Eng. Struct.
,
278
, p.
115508
.10.1016/j.engstruct.2022.115508
15.
Wang
,
M.
,
Ao
,
W. K.
,
Bownjohn
,
J.
, and
Xu
,
F.
,
2022
, “
A Novel Gradient-Based Matching Via Voting Technique for Vision-Based Structural Displacement Measurement
,”
Mech. Syst. Signal Process.
,
171
, p.
108951
.10.1016/j.ymssp.2022.108951
16.
Cai
,
E.
,
Zhang
,
Y.
,
Lu
,
X.
,
Li
,
P.
,
Zhao
,
T.
,
Lin
,
G.
, and
Guo
,
W.
,
2023
, “
A Target-Free Video Structural Motion Estimation Method Based on Multi-Path Optimization
,”
Mech. Syst. Signal Process.
,
198
, p.
110452
.10.1016/j.ymssp.2023.110452
17.
Cai
,
E.
,
Zhang
,
Y.
, and
Quek
,
S. T.
,
2023
, “
Visualizing and Quantifying Small and Nonstationary Structural Motions in Video Measurement
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
38
(
2
), pp.
135
159
.10.1111/mice.12894
18.
Cai
,
E.
,
Zhang
,
Y.
,
Lu
,
X.
,
Ji
,
X.
,
Li
,
Y.
,
Li
,
J.
,
Song
,
X.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2023
, “
Estimating Small Structural Motions Based on Sparsity Enforcement
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
38
(
9
), pp.
1199
1216
.10.1111/mice.12957
19.
Cai
,
E.
,
Zhang
,
Y.
,
Ji
,
X.
,
Lu
,
X.
,
Xie
,
L.
,
Zhuang
,
Y.
,
Zhao
,
T.
, and
Lin
,
G.
,
2023
, “
Estimating Small Structural Motions From Multi-View Video Measurement
,”
Eng. Struct.
,
275
, p.
115259
.10.1016/j.engstruct.2022.115259
20.
Cai
,
E.
, and
Zhang
,
Y.
,
2022
, “
Gaussian Mixture Model Based Phase Prior Learning for Video Motion Estimation
,”
Mech. Syst. Signal Process.
,
175
, p.
109103
.10.1016/j.ymssp.2022.109103
21.
He
,
K.
,
Gkioxari
,
G.
,
Dollár
,
P.
, and
Girshick
,
R.
,
2017
, “
Mask R-CNN
,” IEEE International Conference on Computer Vision (
ICCV
), Venice, Italy, Oct. 22–29, pp.
2980
2988
.10.48550/arXiv.1703.06870
22.
Ren
,
S.
,
He
,
K.
,
Girshick
,
R.
, and
Sun
,
J.
,
2017
, “
Faster R-CNN: Towards Real-Time Object Detection With Region Proposal Networks
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
39
(
6
), pp.
1137
1149
.10.1109/TPAMI.2016.2577031
23.
Wangchuk
,
S.
,
Siringoringo
,
D. M.
, and
Fujino
,
Y.
,
2022
, “
Modal Analysis and Tension Estimation of Stay Cables Using Noncontact Vision-Based Motion Magnification Method
,”
Struct. Control Health Monit.
,
29
(
7
), p.
e2957
.10.1002/stc.2957s
24.
Panchal
,
P. M.
,
Panchal
,
S. R.
, and
Shah
,
S. K.
,
2013
, “
A Comparison of Sift and Surf
,”
Int. J. Innovative Res. Comput. Commun. Eng.
,
1
(
2
), pp.
323
327
.https://www.rroij.com/open-access/a-comparison-ofsift-and-surf.pdf
25.
Sarvaiya
,
J. N.
,
Patnaik
,
S.
, and
Bombaywala
,
S.
,
2009
, “
Image Registration Using Log-Polar Transform and Phase Correlation
,”
TENCON 2009 - 2009 IEEE Region 10 Conference
, Singapore, Jan. 23–26, pp.
1
5
.10.1109/TENCON.2009.5396234
26.
Foroosh
,
H.
,
Zerubia
,
J. B.
, and
Berthod
,
M.
,
2002
, “
Extension of Phase Correlation to Subpixel Registration
,”
IEEE Trans. Image Process.
,
11
(
3
), pp.
188
200
.10.1109/83.988953
27.
Wang
,
G.
,
Lu
,
W.
,
Yuan
,
C.
,
Wang
,
Y.
,
Zhang
,
P.
,
Fan
,
Y.
, and
Kong
,
Q.
,
2022
, “
A Vision-Based Method for Estimating Shallow Cable Tension Via Vibrational Properties
,”
Measurement
,
195
, p.
111070
.10.1016/j.measurement.2022.111070
28.
Wang
,
M.
,
Xu
,
F.
,
Xu
,
Y.
, and
Brownjohn
,
J.
,
2023
, “
A Robust Subpixel Refinement Technique Using Self-Adaptive Edge Points Matching for Vision-Based Structural Displacement Measurement
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
38
(
5
), pp.
562
579
.10.1111/mice.12889
29.
Sun
,
C.
,
Gu
,
D.
,
Zhang
,
Y.
, and
Lu
,
X.
,
2022
, “
Vision-Based Displacement Measurement Enhanced by Super-Resolution Using Generative Adversarial Networks
,”
Struct. Control Health Monit.
,
29
, p.
e3048
.10.1002/stc.3048
30.
Wadhwa
,
N.
,
Rubinstein
,
M.
,
Durand
,
F.
, and
Freeman
,
W. T.
,
2013
, “
Phase-Based Video Motion Processing
,”
ACM Trans. Graph. (TOG)
,
32
(
4
), pp.
1
10
.10.1145/2461912.2461966
31.
Qi
,
Y.
,
Cheng
,
Y.
,
Kong
,
Q.
,
Xiong
,
B.
, and
Li
,
P.
,
2021
, “
A Deep Learning-Based Vision Enhancement Method for UAV Assisted Visual Inspection of Concrete Cracks
,”
Smart Struct. Syst.
,
27
(
6
), pp.
1031
1040
.10.12989/sss.2021.27.6.1031
32.
Kumar
,
P.
,
Sharma
,
A.
, and
Kota
,
S. R.
,
2021
, “
Automatic Multiclass Instance Segmentation of Concrete Damage Using Deep Learning Model
,”
IEEE Access
,
9
, pp.
90330
90345
.10.1109/ACCESS.2021.3090961
33.
Wang
,
J.
,
Urriza
,
P.
,
Han
,
Y.
, and
Cabric
,
D.
,
2011
, “
Weighted Centroid Localization Algorithm: Theoretical Analysis and Distributed Implementation
,”
IEEE Trans. Wireless Commun.
,
10
(
10
), pp.
3403
3413
.10.1109/TWC.2011.081611.102209
34.
Gao
,
X.
,
Ji
,
X.
,
Zhang
,
Y.
,
Zhuang
,
Y.
, and
Cai
,
E.
, “
Structural Displacement Estimation by a Hybrid Computer Vision Approach
,”
Mech. Syst. Signal Process.
,
2023
(
204
), p.
110754
.10.1016/j.ymssp.2023.110754
35.
Hutchinson
,
T.
,
Schafer
,
B.
, and
Peterman
,
K.
,
2021
, “
CFS-NHERI: Seismic Resiliency of Repetitively Framed Mid-Rise Cold-Formed Steel Buildings
,” University of California-San Diego, San Diego, CA, accessed Oct. 30, 2022, https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published//PRJ-2141
36.
Dodgson
,
N. A.
,
1997
, “
Quadratic Interpolation for Image Resampling
,”
IEEE Trans. Image Process.
,
6
(
9
), pp.
1322
1326
.10.1109/83.623195
37.
Benesty
,
J.
,
Chen
,
J.
,
Huang
,
Y.
, and
Cohen
,
I.
,
2009
, “
Pearson Correlation Coefficient
,”
Noise Reduction in Speech Processing
,
I.
Cohen
,
Y.
Huang
,
J.
Chen
, and
J.
Benesty
, eds.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
1
4
.
38.
Hummel
,
R. A.
,
Kimia
,
B.
, and
Zucker
,
S. W.
,
1987
, “
Deblurring Gaussian Blur
,”
Comput. Vision, Graph., Image Process.
,
38
(
1
), pp.
66
80
.10.1016/S0734-189X(87)80153-6
39.
D'Hondt
,
O.
,
Lopez-Martinez
,
C.
,
Guillaso
,
S.
, and
Hellwich
,
O.
,
2018
, “
Nonlocal Filtering Applied to 3-D Reconstruction of Tomographic SAR Data
,”
IEEE Trans. Geosci. Remote Sens.
,
56
(
1
), pp.
272
285
.10.1109/TGRS.2017.2746420
40.
Paris
,
S.
,
Kornprobst
,
P.
,
Tumblin
,
J.
, and
Durand
,
F.
,
2008
, “
Bilateral Filtering: Theory and Applications
,”
Found. Trends® Comput. Graph. Vision
,
4
(
1
), pp.
1
75
.10.1561/0600000020
You do not currently have access to this content.