Abstract

Surrogate models have become increasingly essential for replacing simulation models in additive manufacturing (AM) process analysis and design, particularly for assessing the impact of microstructural variations and process imperfections (aleatory uncertainty). However, these surrogate models can introduce predictive errors, introducing epistemic uncertainty. The challenge arises when dealing with image input data, which is inherently high-dimensional, making it challenging to apply existing uncertainty quantification (UQ) techniques effectively. To address this challenge, this study develops a new UQ methodology based on an existing concept of combining convolutional neural network (CNN) and Gaussian process (GP) regression (GPR). This CNN-GP method converts both numerical and image inputs into a unified, larger-sized image dataset, enabling direct dimension reduction with CNN. Subsequently, GPR constructs the surrogate model, not only providing predictions but also quantifying the associated model uncertainty. This approach ensures that the surrogate model considers both input-related aleatory uncertainty and model-related epistemic uncertainty when it is used for prediction, enhancing confidence in image-based AM simulations and informed decision-making. Three examples validate the high accuracy and effectiveness of the proposed method.

References

1.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
2855
2874
.10.1007/s00170-017-0703-5
2.
Mahadevan
,
S.
,
Nath
,
P.
, and
Hu
,
Z.
,
2022
, “
Uncertainty Quantification for Additive Manufacturing Process Improvement: Recent Advances
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
1
), p.
010801
.10.1115/1.4053184
3.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.10.1115/1.4028540
4.
Yin
,
J.
, and
Du
,
X.
,
2021
, “
A Safety Factor Method for Reliability-Based Component Design
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091705
.10.1115/1.4049881
5.
Torkamani
,
E. A.
, and
Xi
,
Z.
,
2022
, “
Systematical Collision Avoidance Reliability Analysis and Characterization of Reliable System Operation for Autonomous Navigation Using the Dynamic Window Approach
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
3
), p.
031106
.10.1115/1.4053941
6.
Hu
,
Z.
,
Mahadevan
,
S.
, and
Du
,
X.
,
2016
, “
Uncertainty Quantification of Time-Dependent Reliability Analysis in the Presence of Parametric Uncertainty
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
2
(
3
), p.
031005
.10.1115/1.4032307
7.
Han
,
H.
,
Chang
,
S.
, and
Kim
,
H.
,
2019
, “
Multiple Target Exploration Approach for Design Exploration Using a Swarm Intelligence and Clustering
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091401
.10.1115/1.4043201
8.
Giunta
,
A.
,
McFarland
,
J.
,
Swiler
,
L.
, and
Eldred
,
M.
,
2006
, “
The Promise and Peril of Uncertainty Quantification Using Response Surface Approximations
,”
Struct. Infrastruct. Eng.
,
2
(
3–4
), pp.
175
189
.10.1080/15732470600590507
9.
Pandita
,
P.
,
Ghosh
,
S.
,
Gupta
,
V. K.
,
Meshkov
,
A.
, and
Wang
,
L.
,
2022
, “
Application of Deep Transfer Learning and Uncertainty Quantification for Process Identification in Powder Bed Fusion
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
8
(
1
), p.
011106
.10.1115/1.4051748
10.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.10.1115/1.4033428
11.
Wang
,
Y.
,
Yu
,
X.
, and
Du
,
X.
,
2015
, “
Improved Reliability-Based Optimization With Support Vector Machines and Its Application in Aircraft Wing Design
,”
Math. Probl. Eng.
,
2015
, pp.
1
14
.10.1155/2015/569016
12.
Li
,
H.
,
Yin
,
J.
, and
Du
,
X.
,
2022
, “
Label Free Uncertainty Quantification
,”
AIAA
Paper No. 2022-1097.10.2514/6.2022-1097
13.
Yin
,
J.
, and
Du
,
X.
,
2022
, “
Active Learning With Generalized Sliced Inverse Regression for High-Dimensional Reliability Analysis
,”
Struct. Saf.
,
94
, p.
102151
.10.1016/j.strusafe.2021.102151
14.
Yin
,
J.
, and
Du
,
X.
,
2021
, “
High-Dimensional Reliability Method Accounting for Important and Unimportant Input Variables
,”
ASME J. Mech. Des.
,
144
(
4
), p.
28
.10.1115/1.4051982
15.
Hadidi
,
A.
,
Azar
,
B. F.
, and
Rafiee
,
A.
,
2017
, “
Efficient Response Surface Method for High-Dimensional Structural Reliability Analysis
,”
Struct. Saf.
,
68
, pp.
15
27
.10.1016/j.strusafe.2017.03.006
16.
Bucher
,
C.
,
2009
, “
Asymptotic Sampling for High-Dimensional Reliability Analysis
,”
Probab. Eng. Mech.
,
24
(
4
), pp.
504
510
.10.1016/j.probengmech.2009.03.002
17.
Li
,
M.
,
Sadoughi
,
M.
,
Hu
,
C.
,
Hu
,
Z.
,
Eshghi
,
A. T.
, and
Lee
,
S.
,
2019
, “
High-Dimensional Reliability-Based Design Optimization Involving Highly Nonlinear Constraints and Computationally Expensive Simulations
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051402
.10.1115/1.4041917
18.
Li
,
M.
, and
Wang
,
Z.
,
2020
, “
Deep Learning for High-Dimensional Reliability Analysis
,”
Mech. Syst. Signal Process.
,
139
, p.
106399
.10.1016/j.ymssp.2019.106399
19.
Zhang
,
H.
,
Chen
,
W.
,
Iyer
,
A.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2022
, “
Uncertainty-Aware Mixed-Variable Machine Learning for Materials Design
,”
Sci. Rep.
,
12
(
1
), p.
19760
.10.1038/s41598-022-23431-2
20.
Xia
,
Y.
,
Chen
,
L.
,
Luo
,
J.
, and
Tao
,
W.
,
2023
, “
Numerical Investigation of Microchannel Heat Sinks With Different Inlets and Outlets Based on Topology Optimization
,”
Appl. Energy
,
330
(Part A), p.
120335
.10.1016/j.apenergy.2022.120335
21.
Rosebrock
,
A.
,
2021
, “
Keras: Multiple Inputs and Mixed Data
,” PyImageSearch, Philadelphia, PA, accessed Feb. 15, 2021, https://www.pyimagesearch.com/2019/02/04/keras-multiple-inputs-and-mixed-data/
22.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “
Imagenet Classification With Deep Convolutional Neural Networks
,”
Adv. Neural Inf. Process. Syst.
, Lake Tahoe, NV, pp.
1097
1105
.https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
23.
LeCun
,
Y.
,
Boser
,
B.
,
Denker
,
J. S.
,
Henderson
,
D.
,
Howard
,
R. E.
,
Hubbard
,
W.
, and
Jackel
,
L. D.
,
1989
, “
Backpropagation Applied to Handwritten Zip Code Recognition
,”
Neural Comput.
,
1
(
4
), pp.
541
551
.10.1162/neco.1989.1.4.541
24.
Albawi
,
S.
,
Mohammed
,
T. A.
, and
Al-Zawi
,
S.
,
2017
, “
Understanding of a Convolutional Neural Network
,” 2017 International Conference on Engineering and Technology (
ICET
),
IEEE
,
Antalya, Turkey
, Aug. 21–23, pp.
1
6
.10.1109/ICEngTechnol.2017.8308186
25.
Sharma
,
A.
,
Vans
,
E.
,
Shigemizu
,
D.
,
Boroevich
,
K. A.
, and
Tsunoda
,
T.
,
2019
, “
Deep insight: A Methodology to Transform a Non-Image Data to an Image for Convolution Neural Network Architecture
,”
Sci. Rep.
,
9
(
1
), pp.
1
7
.10.1038/s41598-019-47765-6
26.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.10.1115/1.4007390
27.
Bae
,
S.
,
Park
,
C.
, and
Kim
,
N. H.
,
2020
, “
Estimating Effect of Additional Sample on Uncertainty Reduction in Reliability Analysis Using Gaussian Process
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111706
.10.1115/1.4047002
28.
Bradshaw
,
J.
,
Matthews
,
A. G. D. G.
, and
Ghahramani
,
Z.
,
2017
, “
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
,” arXiv:1707.02476.
29.
Yin
,
J.
, and
Du
,
X.
,
2022
, “
Uncertainty Quantification by Convolutional Neural Network Gaussian Process Regression With Image and Numerical Data
,”
AIAA
Paper No. 2022-1100.10.2514/6.2022-1100
30.
Rasmussen
,
C. E.
,
2003
, “
Gaussian Processes in Machine Learning
,”
Summer School on Machine Learning
,
Springer
,
Berlin, Heidelberg
, pp.
63
71
.
31.
Brevault
,
L.
,
Lacaze
,
S.
,
Balesdent
,
M.
, and
Missoum
,
S.
,
2016
, “
Reliability Analysis in the Presence of Aleatory and Epistemic Uncertainties, Application to the Prediction of a Launch Vehicle Fallout Zone
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111401
.10.1115/1.4034106
32.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
.10.1115/1.4041946
33.
Wei
,
X.
, and
Du
,
X.
,
2019
, “
Robustness Metric for Robust Design Optimization Under Time- and Space-Dependent Uncertainty Through Metamodeling
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031110
.10.1115/1.4045599
34.
Jung
,
Y.
,
Kang
,
K.
,
Cho
,
H.
, and
Lee
,
I.
,
2021
, “
Confidence-Based Design Optimization for a More Conservative Optimum Under Surrogate Model Uncertainty Caused by Gaussian Process
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091701
.10.1115/1.4049883
35.
LeCun
,
Y.
,
Bottou
,
L.
,
Bengio
,
Y.
, and
Haffner
,
P.
,
1998
, “
Gradient-Based Learning Applied to Document Recognition
,”
Proc. IEEE
,
86
(
11
), pp.
2278
2324
.10.1109/5.726791
36.
Lophaven
,
S. N.
,
Nielsen
,
H. B.
, and
Søndergaard
,
J.
,
2002
,
DACE: A Matlab Kriging Toolbox
, Vol.
2
,
Citeseer
,
Lyngby, Denmark
.
37.
Steinwart
,
I.
, and
Christmann
,
A.
,
2008
,
Support Vector Machines
,
Springer Science & Business Media
,
New York
.
38.
Liu
,
J.
,
Lin
,
Z.
,
Padhy
,
S.
,
Tran
,
D.
,
Bedrax Weiss
,
T.
, and
Lakshminarayanan
,
B.
,
2020
, “
Simple and Principled Uncertainty Estimation With Deterministic Deep Learning Via Distance Awareness
,”
Adv. Neural Inf. Process. Syst.
, Vancouver, BC, pp.
7498
7512
.https://papers.nips.cc/paper/2020/file/543e83748234f7cbab21aa0ade66565f-Paper.pdf
You do not currently have access to this content.