Abstract

The human error probabilities (HEP) can be estimated using multipliers that correspond to the level of performance shaping factors (PSFs) in the human reliability analysis (HRA). This paper focuses on the adjustment of multipliers through Bayesian inference based on Monte Carlo techniques using the experimental results from simulators. Markov Chain Monte Carlo (MCMC) and Bayesian Monte Carlo (BMC) are used as Bayesian inference methods based on Monte Carlo techniques. MCMC is utilized to obtain the posterior distribution of the multipliers. BMC is used for the estimation of the moments of the posterior distribution such as the mean and variance. The results obtained by MCMC and that by BMC well agree with the reference results. As a case study, the data assimilation was performed using the results of the simulator experiment of Halden reactor. The results show that the multiplier changes by the result of a particular scenario and HEP of another scenario that uses the same multiplier also changes by data assimilation. Also, in the case study, the correlation between multipliers is obtained by the data assimilation and the correlation contributes to the reduction of uncertainty of HEP.

References

1.
Perrow
,
C.
,
1994
, “
The Limits of Safety: The Enhancement of a Theory of Accidents
,”
J. Conting. Crisis Manage.
,
2
(
4
), pp.
212
220
.10.1111/j.1468-5973.1994.tb00046.x
2.
French
,
S.
,
Bedford
,
T.
,
Pollard
,
S. J. T.
, and
Soane
,
E.
,
2011
, “
Human Reliability Analysis: A Critique and Review for Managers
,”
Saf. Sci.
,
49
(
6
), pp.
753
763
.10.1016/j.ssci.2011.02.008
3.
Čepin
,
M.
,
2019
, “
Contribution of Human Reliability in Power Probabilistic Safety Assessment Models Versus Shutdown Models
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B Mech. Eng.
,
6
(
1
), p.
011001
.10.1115/1.4044783
4.
Bui
,
H.
,
Sakurahara
,
T.
,
Reihani
,
S.
,
Kee
,
E.
, and
Mohaghegh
,
Z.
,
2019
, “
Spatiotemporal Integration of an Agent-Based First Responder Performance Model With a Fire Hazard Propagation Model for Probabilistic Risk Assessment of Nuclear Power Plants
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B Mech. Eng.
,
6
(
1
), p. 011011.10.1115/1.4044793
5.
Kim
,
Y.
,
2020
, “
Considerations for Generating Meaningful HRA Data: Lessons Learned From HuREX Data Collection
,”
Nucl. Eng. Technol.
,
52
(
8
), pp.
1697
1705
.10.1016/j.net.2020.01.034
6.
Jung
,
W.
,
Park
,
J.
,
Kim
,
Y.
,
Choi
,
S. Y.
, and
Kim
,
S.
,
2020
, “
HuREX – a Framework of HRA Data Collection From Simulators in Nuclear Power Plants
,”
Reliab. Eng. Syst. Saf.
,
194
, p.
106235
.10.1016/j.ress.2018.07.036
7.
Kančev
,
D.
,
2020
, “
A Plant-Specific HRA Sensitivity Analysis Considering Dynamic Operator Actions and Accident Management Actions
,”
Nucl. Eng. Technol.
,
52
(
9
), pp.
1983
1989
.10.1016/j.net.2020.02.021
8.
Kirimoto
,
Y.
,
Hirotsu
,
Y.
,
Nonose
,
K.
, and
Sasou
,
K.
,
2021
, “
Development of a Human Reliability Analysis (HRA) Guide for Qualitative Analysis With Emphasis on Narratives and Models for Tasks in Extreme Conditions
,”
Nucl. Eng. Technol.
,
53
(
2
), pp.
376
385
.10.1016/j.net.2020.10.004
9.
Garg
,
V.
,
Vinod
,
G.
,
Prasad
,
M.
,
Chattopadhyay
,
J.
,
Smith
,
C.
, and
Kant
,
V.
,
2023
, “
Human Reliability Analysis Studies From Simulator Experiments Using Bayesian Inference
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108846
.10.1016/j.ress.2022.108846
10.
Bui
,
H.
,
Sakurahara
,
T.
,
Reihani
,
S.
,
Kee
,
E.
, and
Mohaghegh
,
Z.
,
2024
, “
Probabilistic Validation: Computational Platform and Application to Fire Probabilistic Risk Assessment of Nuclear Power Plants
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B Mech. Eng.
,
10
(
2
), p.
021202
.10.1115/1.4063071
11.
Liao
,
H.
,
Forester
,
J.
,
Dang
,
V. N.
,
Bye
,
A.
,
Chang
,
Y. H. J.
, and
Lois
,
E.
,
2019
, “
Assessment of HRA Method Predictions Against Operating Crew Performance: Part I: Study Background, Design and Methodology
,”
Reliab. Eng. Syst. Saf.
,
191
, p.
106509
.10.1016/j.ress.2019.106509
12.
Liao
,
H.
,
Forester
,
J.
,
Dang
,
V. N.
,
Bye
,
A.
,
Chang
,
Y. H. J.
, and
Lois
,
E.
,
2019
, “
Assessment of HRA Method Predictions Against Operating Crew Performance: Part II: Overall Simulator Data, HRA Method Predictions, and Intra-Method Comparisons
,”
Reliab. Eng. Syst. Saf.
,
191
, p.
106510
.10.1016/j.ress.2019.106510
13.
Liao
,
H.
,
Forester
,
J.
,
Dang
,
V. N.
,
Bye
,
A.
,
Chang
,
Y. H. J.
, and
Lois
,
E.
,
2019
, “
Assessment of HRA Method Predictions Against Operating Crew Performance: Part III: Conclusions and Achievements
,”
Reliab. Eng. Syst. Saf.
,
191
, p.
106511
.10.1016/j.ress.2019.106511
14.
Groth
,
K. M.
, and
Swiler
,
L. P.
,
2013
, “
Bridging the Gap Between HRA Research and HRA Practice: A Bayesian Network Version of SPAR-H
,”
Reliab. Eng. Syst. Saf.
,
115
, pp.
33
42
.10.1016/j.ress.2013.02.015
15.
Zwirglmaier
,
K.
,
Straub
,
D.
, and
Groth
,
K. M.
,
2017
, “
Capturing Cognitive Causal Paths in Human Reliability Analysis With Bayesian Network Models
,”
Reliab. Eng. Syst. Saf.
,
158
, pp.
117
129
.10.1016/j.ress.2016.10.010
16.
Groth
,
K. M.
,
Smith
,
R.
, and
Moradi
,
R.
,
2019
, “
A Hybrid Algorithm for Developing Third Generation HRA Methods Using Simulator Data, Causal Models, and Cognitive Science
,”
Reliab. Eng. Syst. Saf.
,
191
, p.
106507
.10.1016/j.ress.2019.106507
17.
Morais
,
C.
,
Moura
,
R.
,
Beer
,
M.
, and
Patelli
,
E.
,
2019
, “
Analysis and Estimation of Human Errors From Major Accident Investigation Reports
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B Mech. Eng.
,
6
(
1
), p.
011014
.10.1115/1.4044796
18.
Kamil
,
M. Z.
,
Khan
,
F.
,
Song
,
G.
, and
Ahmed
,
S.
,
2019
, “
Dynamic Risk Analysis Using Imprecise and Incomplete Information
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B Mech. Eng.
,
5
(
4
), p.
041005
.10.1115/1.4044042
19.
Abrishami
,
S.
,
Khakzad
,
N.
, and
Hosseini
,
S. M.
,
2020
, “
A Data-Based Comparison of BN-HRA Models in Assessing Human Error Probability: An Offshore Evacuation Case Study
,”
Reliab. Eng. Syst. Saf.
,
202
, p.
107043
.10.1016/j.ress.2020.107043
20.
Abrishami
,
S.
,
Khakzad
,
N.
,
Hosseini
,
S. M.
, and
van Gelder
,
P.
,
2020
, “
BN-SLIM: A Bayesian Network Methodology for Human Reliability Assessment Based on Success Likelihood Index Method (SLIM)
,”
Reliab. Eng. Syst. Saf.
,
193
, p.
106647
.10.1016/j.ress.2019.106647
21.
Dindar
,
S.
,
Kaewunruen
,
S.
, and
An
,
M.
,
2020
, “
Bayesian Network-Based Human Error Reliability Assessment of Derailments
,”
Reliab. Eng. Syst. Saf.
,
197
, p.
106825
.10.1016/j.ress.2020.106825
22.
Fan
,
S.
,
Blanco-Davis
,
E.
,
Yang
,
Z.
,
Zhang
,
J.
, and
Yan
,
X.
,
2020
, “
Incorporation of Human Factors Into Maritime Accident Analysis Using a Data-Driven Bayesian Network
,”
Reliab. Eng. Syst. Saf.
,
203
, p.
107070
.10.1016/j.ress.2020.107070
23.
Pan
,
X.
,
Zuo
,
D.
,
Zhang
,
W.
,
Hu
,
L.
,
Wang
,
H.
, and
Jiang
,
J.
,
2020
, “
Research on Human Error Risk Evaluation Using Extended Bayesian Networks With Hybrid Data
,”
Reliab. Eng. Syst. Saf.
,
209
, p.
107336
.10.1016/j.ress.2020.107336
24.
Krymsky
,
V. G.
, and
Akhmedzhanov
,
F. M.
,
2021
, “
Assessment of Human Reliability Under the Conditions of Uncertainty: SPAR-H Methodology Interpreted in Terms of Interval-Valued Probabilities
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B Mech. Eng.
,
7
(
2
), p. 020907.10.1115/1.4050167
25.
Shirley
,
R. B.
,
Smidts
,
C.
, and
Zhao
,
Y.
,
2020
, “
Development of a Quantitative Bayesian Network Mapping Objective Factors to Subjective Performance Shaping Factor Evaluations: An Example Using Student Operators in a Digital Nuclear Power Plant Simulator
,”
Reliab. Eng. Syst. Saf.
,
194
, p.
106416
.10.1016/j.ress.2019.03.023
26.
Sun
,
Z.
,
Gong
,
E.
,
Li
,
Z.
,
Jiang
,
Y.
, and
Xie
,
H.
,
2013
, “
Bayesian Estimator of Human Error Probability Based on Human Performance Data
,”
J. Syst. Eng. Electron.
,
24
(
2
), pp.
242
249
.10.1109/JSEE.2013.00031
27.
Groth
,
K. M.
,
Smith
,
C. L.
, and
Swiler
,
L. P.
,
2014
, “
A Bayesian Method for Using Simulator Data to Enhance Human Error Probabilities Assigned by Existing HRA Methods
,”
Reliab. Eng. Syst. Saf.
,
128
, pp.
32
40
.10.1016/j.ress.2014.03.010
28.
Kim
,
Y.
,
Park
,
J.
,
Jung
,
W.
,
Choi
,
S. Y.
, and
Kim
,
S.
,
2018
, “
Estimating the Quantitative Relation Between PSFs and HEPs From Full-Scope Simulator Data
,”
Reliab. Eng. Syst. Saf.
,
173
, pp.
12
22
.10.1016/j.ress.2018.01.001
29.
Musharraf
,
M.
,
Moyle
,
A.
,
Khan
,
F.
, and
Veitch
,
B.
,
2019
, “
Using Simulator Data to Facilitate Human Reliability Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
141
(
2
), p. 021607.10.1115/1.4042538
30.
Gertman
,
D.
,
Blackman
,
H.
,
Marble
,
J.
,
Byers
,
J.
, and
Smith
,
C.
,
2005
, “
The SPAR-H Human Reliability Analysis Method
,” U.S. Nuclear Regulatory Commission, Washington, DC, Vol. 230, p.
35
.
31.
Laumann
,
K.
, and
Rasmussen
,
M.
,
2016
, “
Suggested Improvements to the Definitions of Standardized Plant Analysis of Risk-Human Reliability Analysis (SPAR-H) Performance Shaping Factors, Their Levels and Multipliers and the Nominal Tasks
,”
Reliab. Eng. Syst. Saf.
,
145
, pp.
287
300
.10.1016/j.ress.2015.07.022
32.
Park
,
J.
,
Jung
,
W.
, and
Kim
,
J.
,
2020
, “
Inter-Relationships Between Performance Shaping Factors for Human Reliability Analysis of Nuclear Power Plants
,”
Nucl. Eng. Technol.
,
52
(
1
), pp.
87
100
.10.1016/j.net.2019.07.004
33.
Boring
,
R. L.
,
2010
, “
How Many Performance Shaping Factors Are Necessary for Human Reliability Analysis?
,” 10th International Probabilistic Safety Assessment & Management Conference (
PSAM10
), Seattle, WA, June 9.https://inldigitallibrary.inl.gov/sites/sti/sti/4814133.pdf
34.
Liu
,
P.
, and
Li
,
Z.
,
2014
, “
Human Error Data Collection and Comparison With Predictions by SPAR-H
,”
Risk Anal.
,
34
(
9
), pp.
1706
1719
.10.1111/risa.12199
35.
Robert J. Hockey
,
G.
,
1997
, “
Compensatory Control in the Regulation of Human Performance Under Stress and High Workload: A Cognitive-Energetical Framework
,”
Biol. Psychol.
,
45
(
1–3
), pp.
73
93
.10.1016/S0301-0511(96)05223-4
36.
Boring
,
R. L.
, and
Blackman
,
H. S.
,
2007
, “
The Origins of the SPAR-H Method's Performance Shaping Factor Multipliers
,”
IEEE Eighth Human Factors and Power Plants and HPRCT 13th Annual Meeting
, Monterey, CA, Aug. 26–31, pp.
177
184
.10.1109/HFPP.2007.4413202
37.
Kim
,
Y.
, and
Park
,
J.
,
2019
, “
Incorporating Prior Knowledge With Simulation Data to Estimate PSF Multipliers Using Bayesian Logistic Regression
,”
Reliab. Eng. Syst. Saf.
,
189
, pp.
210
217
.10.1016/j.ress.2019.04.022
38.
Takeda
,
S.
, and
Kitada
,
T.
,
2020
, “
Individual Adjustment of Independent Cross-Section Set Based on Bayesian Theory
,”
Nucl. Sci. Eng.
,
195
(
5
), pp.
496
508
.10.1080/00295639.2020.1833601
39.
Takeda
,
T.
,
Takeda
,
S.
,
Koike
,
H.
,
Kitada
,
T.
, and
Sato
,
D.
,
2020
, “
An Estimation of Cross-Section Covariance Data Suitable for Predicting Neutronics Parameters Uncertainty
,”
Ann. Nucl. Energy
,
145
, p.
107534
.10.1016/j.anucene.2020.107534
40.
Takeda
,
S.
,
Sugihara
,
H.
, and
Kitada
,
T.
,
2021
, “
Bayesian Estimation for Covariance Between Cross-Section and Errors of Experiment and Calculation
,”
Ann. Nucl. Energy
,
163
, p.
108589
.10.1016/j.anucene.2021.108589
41.
Takeda
,
S.
, and
Kitada
,
T.
,
2021
, “
Simple Method Based on Sensitivity Coefficient for Stochastic Uncertainty Analysis in Probabilistic Risk Assessment
,”
Reliab. Eng. Syst. Saf.
,
209
, p.
107471
.10.1016/j.ress.2021.107471
42.
Takeda
,
S.
,
Shibano
,
R.
, and
Kitada
,
T.
,
2021
, “
Cross-Section Adjustment Method Based on Bayesian Theory for Specific Cross-Section Set
,”
J. Nucl. Sci. Technol.
,
58
(
9
), pp.
999
1007
.10.1080/00223131.2021.1899995
43.
Takeda
,
S.
, and
Kitada
,
T.
,
2022
, “
Bayesian Estimation of Cross-Section, Experimental Error, and Calculation Error: Comparison With Bias Factor Method
,”
Nucl. Sci. Eng.
,
197
(
8
), pp.
1621
1633
.10.1080/00295639.2022.2123679
44.
Takeda
,
S.
, and
Kitada
,
T.
,
2023
, “
Importance Measure Evaluation Based on Sensitivity Coefficient for Probabilistic Risk Assessment
,”
Reliab. Eng. Syst. Saf.
,
234
, p.
109205
.10.1016/j.ress.2023.109205
45.
Koning
,
A. J.
,
2015
, “
Bayesian Monte Carlo Method for Nuclear Data Evaluation
,”
Nucl. Data Sheets
,
123
, pp.
207
213
.10.1016/j.nds.2014.12.036
46.
Siefman
,
D.
,
Hursin
,
M.
,
Rochman
,
D.
,
Pelloni
,
S.
, and
Pautz
,
A.
,
2018
, “
Stochastic vs. sensitivity-Based Integral Parameter and Nuclear Data Adjustments
,”
Eur. Phys. J. Plus
,
133
(
10
), p.
429
.10.1140/epjp/i2018-12303-8
47.
Cabellos
,
O.
, and
Fiorito
,
L.
,
2019
, “
Examples of Monte Carlo Techniques Applied for Nuclear Data Uncertainty Propagation
,”
EPJ Web Conf.
,
211
, p.
07008
.10.1051/epjconf/201921107008
48.
Alhassan
,
E.
,
Rochman
,
D.
,
Vasiliev
,
A.
,
Hursin
,
M.
,
Koning
,
A. J.
, and
Ferroukhi
,
H.
,
2022
, “
Iterative Bayesian Monte Carlo for Nuclear Data Evaluation
,”
Nucl. Sci. Tech.
,
33
(
4
), p.
50
.10.1007/s41365-022-01034-w
49.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
2004
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.10.1063/1.1699114
50.
Smith
,
D.
,
2008
,
Nuclear Engineering, D.
, “
A Unified Monte Carlo Approach to Fast Neutron Cross Section Data Evaluation
,” Argonne National Laboratory, Lemont, IL
.
51.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
,
57
(
1
), pp.
97
109
.10.1093/biomet/57.1.97
52.
Ceferino
,
L.
,
Lin
,
N.
, and
Xi
,
D.
,
2023
, “
Bayesian Updating of Solar Panel Fragility Curves and Implications of Higher Panel Strength for Solar Generation Resilience
,”
Reliab. Eng. Syst. Saf.
,
229
, p.
108896
.10.1016/j.ress.2022.108896
53.
Park
,
J.
,
Arigi
,
A. M.
, and
Kim
,
J.
,
2019
, “
A Comparison of the Quantification Aspects of Human Reliability Analysis Methods in Nuclear Power Plants
,”
Ann. Nucl. Energy
,
133
, pp.
297
312
.10.1016/j.anucene.2019.05.031
54.
Zhao
,
Y.
,
2022
, “
A Bayesian Approach to Comparing Human Reliability Analysis Methods Using Human Performance Data
,”
Reliab. Eng. Syst. Saf.
,
219
, p.
108213
.10.1016/j.ress.2021.108213
55.
Chen
,
S.
,
Zhang
,
L.
,
Qing
,
T.
, and
Liu
,
X.
,
2021
, “
Use of Bayesian Networks and Improved SPAR-H for Quantitative Analysis of Human Reliability During Severe Accidents Mitigation Process in Nuclear Power Plant
,”
J. Nucl. Sci. Technol.
,
58
(
10
), pp.
1099
1112
.10.1080/00223131.2021.1915893
56.
Liu
,
J.
,
Zou
,
Y.
,
Wang
,
W.
,
Zio
,
E.
,
Yuan
,
C.
,
Wang
,
T.
, and
Jiang
,
J.
,
2022
, “
A Bayesian Belief Network Framework for Nuclear Power Plant Human Reliability Analysis Accounting for Dependencies Among Performance Shaping Factors
,”
Reliab. Eng. Syst. Saf.
,
228
, p.
108766
.10.1016/j.ress.2022.108766
57.
Yan
,
S.
,
Yao
,
K.
,
Li
,
F.
,
Wei
,
Y.
, and
Tran
,
C. C.
,
2022
, “
Application of a Bayesian Network to Quantify Human Reliability in Nuclear Power Plants Based on the SPAR-H Method
,”
Int. J. Occup. Saf. Ergonom.
,
28
(
4
), pp.
2588
2598
.10.1080/10803548.2022.2026074
58.
John
,
F.
,
Huafei
,
L.
,
Vinh
,
D. N.
,
Andreas
,
B.
,
Lois
,
A.
,
Mary
,
P.
, and
Julie
,
M.
,
2016
, “
The U.S. HRA Empirical Study – Assessment of HRA Method Predictions against Operating Crew Performance on a U.S. Nuclear Power Plant Simulator
,”
U.S. Nuclear Regulatory Commission
, Washington, DC.https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr2156/index.html
You do not currently have access to this content.