Abstract

Physics-based multiscale corrosion simulation plays a vital role in predicting the evolution of pitting corrosion on large civil infrastructure, contributing to a model-informed structural health monitoring strategy for risk-based asset health management. The physics-based analysis, however, may not accurately reflect the underlying true physics due to various uncertainty sources and needs to be updated using Bayesian inference methods based on observations to make the prediction closer to field observations. However, traditional Bayesian inference requires the evaluation of a likelihood function, which is often unavailable due to the complex model architecture and various surrogate models used in the analysis. Therefore, likelihood-free inference approaches are required for the updating of the multiscale corrosion simulation models. This paper meets this need by proposing a conditional invertible neural network (cINN)-based Bayesian model updating method for an existing corrosion simulation model. We first train a cINN model based on simulated observations generated from a high-fidelity forward corrosion analysis model. A convolutional neural network-based feature extraction algorithm is then employed to extract key features from corrosion images. After that, the extracted corrosion features are used as inputs of the cINN model to directly obtain posterior distributions of uncertain corrosion model parameters without evaluating the likelihood function. A case study of a miter gate structure is used to demonstrate the proposed approach. The results show that the proposed cINN-based model updating approach can provide more accurate inference results with a reduced computational cost in comparison to the classical approximate Bayesian computation (ABC) approach.

References

1.
Valdez
,
B.
,
Ramirez
,
J.
,
Eliezer
,
A.
,
Schorr
,
M.
,
Ramos
,
R.
, and
Salinas
,
R.
,
2016
, “
Corrosion Assessment of Infrastructure Assets in Coastal Seas
,”
J. Mar. Eng. Technol.
,
15
(
3
), pp.
124
134
.10.1080/20464177.2016.1247635
2.
Peng
,
L.
,
Stewart
,
M. G.
, and
Melchers
,
R. E.
,
2017
, “
Corrosion and Capacity Prediction of Marine Steel Infrastructure Under a Changing Environment
,”
Struct. Infrastruct. Eng.
,
13
(
8
), pp.
988
1001
.10.1080/15732479.2016.1229798
3.
Yu
,
X.
,
Wan
,
F.
, and
Guo
,
Y.
,
2016
, “
Micromechanics Modeling of Skin Panel With Pitting Corrosion for Aircraft Structural Health Monitoring
,” IEEE International Conference on Prognostics and Health Management (
ICPHM
), Ottawa, ON, Canada, June 20–22, pp.
1
8
.10.1109/ICPHM.2016.7542831
4.
Burns
,
J.
,
Larsen
,
J.
, and
Gangloff
,
R.
,
2011
, “
Driving Forces for Localized Corrosion-to-Fatigue Crack Transition in Al–Zn–Mg–Cu
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
10
), pp.
745
773
.10.1111/j.1460-2695.2011.01568.x
5.
Co
,
N. E. C.
, and
Burns
,
J. T.
,
2021
, “
Effects of Micro-Scale Corrosion Damage Features and Local Microstructure on Fatigue Crack Initiation Location
,”
Int. J. Fatigue
,
150
, p.
106301
.10.1016/j.ijfatigue.2021.106301
6.
McDowell
,
D.
, and
Dunne
,
F.
,
2010
, “
Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation
,”
Int. J. Fatigue
,
32
(
9
), pp.
1521
1542
.10.1016/j.ijfatigue.2010.01.003
7.
Jones
,
K.
,
Hoeppner
,
D. W.
, and
Dean
,
S. W.
,
2006
, “
Effect of Microstructure on Pit-to-Crack Transition of 7075-T6 Aluminum Alloy
,”
J. ASTM Int.
,
3
(
7
), p.
100485
.10.1520/JAI100485
8.
Chookah
,
M.
,
Nuhi
,
M.
, and
Modarres
,
M.
,
2011
, “
A Probabilistic Physics-of-Failure Model for Prognostic Health Management of Structures Subject to Pitting and Corrosion-Fatigue
,”
Reliab. Eng. Syst. Saf.
,
96
(
12
), pp.
1601
1610
.10.1016/j.ress.2011.07.007
9.
Ge
,
B.
, and
Kim
,
S.
,
2021
, “
Probabilistic Service Life Prediction Updating With Inspection Information for RC Structures Subjected to Coupled Corrosion and Fatigue
,”
Eng. Struct.
,
238
, p.
112260
.10.1016/j.engstruct.2021.112260
10.
Shekari
,
E.
,
Khan
,
F.
, and
Ahmed
,
S.
,
2017
, “
Probabilistic Modeling of Pitting Corrosion in Insulated Components Operating in Offshore Facilities
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
3
(
1
), p.
011003
.10.1115/1.4034603
11.
Qian
,
G.
,
Tantratian
,
K.
,
Chen
,
L.
,
Hu
,
Z.
, and
Todd
,
M. D.
,
2022
, “
A Probabilistic Computational Framework for the Prediction of Corrosion-Induced Cracking in Large Structures
,”
Sci. Rep.
,
12
(
1
), p.
20898
.10.1038/s41598-022-25477-8
12.
Qian
,
G.
,
2023
, “
Diagnostics and Prognostics of Pitting Corrosion in Large Civil Infrastructure Using Multi-Scale Simulation and Machine Learning
,” Ph.D. thesis,
University of California San Diego
,
La Jolla, CA
.
13.
Qian
,
G.
,
Najera-Flores
,
D.
,
Hu
,
Z.
, and
Todd
,
M. D.
,
2023
, “
A Hybrid Surrogate Modeling Method for Corrosion Morphology Prediction Under Non-Stationary Dynamic Loading
,”
Proceedings of the Structural Health Monitoring 2023
, Stanford, CA, Sept. 12–14, pp.
643
650
.10.12783/shm2023/36797
14.
Kayser
,
J. R.
,
1988
, “
The Effects of Corrosion on the Reliability of Steel Girder Bridges
,”
Ph.D. thesis
,
University of Michigan
,
Ann Arbor, MI
.https://www.proquest.com/openview/240260e654cc574f4deab064fa0a07ea/1?pqorigsite=gscholar&cbl=18750&diss=y
15.
Stewart
,
M. G.
, and
Al-Harthy
,
A.
,
2008
, “
Pitting Corrosion and Structural Reliability of Corroding RC Structures: Experimental Data and Probabilistic Analysis
,”
Reliab. Eng. Syst. Saf.
,
93
(
3
), pp.
373
382
.10.1016/j.ress.2006.12.013
16.
Zhang
,
W.
,
Zhou
,
B.
,
Gu
,
X.
, and
Dai
,
H.
,
2014
, “
Probability Distribution Model for Cross-Sectional Area of Corroded Reinforcing Steel Bars
,”
J. Mater. Civ. Eng.
,
26
(
5
), pp.
822
832
.10.1061/(ASCE)MT.1943-5533.0000888
17.
Stewart
,
M. G.
, and
Suo
,
Q.
,
2009
, “
Extent of Spatially Variable Corrosion Damage as an Indicator of Strength and Time-Dependent Reliability of RC Beams
,”
Eng. Struct.
,
31
(
1
), pp.
198
207
.10.1016/j.engstruct.2008.08.011
18.
Castaldo
,
P.
,
Palazzo
,
B.
, and
Mariniello
,
A.
,
2017
, “
Effects of the Axial Force Eccentricity on the Time-Variant Structural Reliability of Aging RC Cross-Sections Subjected to Chloride-Induced Corrosion
,”
Eng. Struct.
,
130
, pp.
261
274
.10.1016/j.engstruct.2016.10.053
19.
Akpanyung
,
K.
, and
Loto
,
R.
,
2019
, “
Pitting Corrosion Evaluation: A Review
,”
J. Phys.: Conf. Ser.
,
1378
(
2
), p.
022088
.10.1088/1742-6596/1378/2/022088
20.
Gong
,
C.
, and
Frangopol
,
D. M.
,
2020
, “
Reliability of Steel Girder Bridges With Dependent Corrosion Growth
,”
Eng. Struct.
,
224
, p.
111125
.10.1016/j.engstruct.2020.111125
21.
Saassouh
,
B.
, and
Lounis
,
Z.
,
2012
, “
Probabilistic Modeling of Chloride-Induced Corrosion in Concrete Structures Using First-and Second-Order Reliability Methods
,”
Cem. Concr. Compos.
,
34
(
9
), pp.
1082
1093
.10.1016/j.cemconcomp.2012.05.001
22.
Shi
,
P.
, and
Mahadevan
,
S.
,
2003
, “
Corrosion Fatigue and Multiple Site Damage Reliability Analysis
,”
Int. J. Fatigue
,
25
(
6
), pp.
457
469
.10.1016/S0142-1123(03)00020-3
23.
Scheiner
,
S.
, and
Hellmich
,
C.
,
2007
, “
Stable Pitting Corrosion of Stainless Steel as Diffusion-Controlled Dissolution Process With a Sharp Moving Electrode Boundary
,”
Corros. Sci.
,
49
(
2
), pp.
319
346
.10.1016/j.corsci.2006.03.019
24.
Stafiej
,
J.
,
Di Caprio
,
D.
, and
Bartosik
,
Ł.
,
2013
, “
Corrosion-Passivation Processes in a Cellular Automata Based Simulation Study
,”
J. Supercomput.
,
65
(
2
), pp.
697
709
.10.1007/s11227-013-0933-8
25.
Zhang
,
G.
,
Gazonas
,
G. A.
, and
Bobaru
,
F.
,
2018
, “
Supershear Damage Propagation and Sub-Rayleigh Crack Growth From Edge-On Impact: A Peridynamic Analysis
,”
Int. J. Impact Eng.
,
113
, pp.
73
87
.10.1016/j.ijimpeng.2017.11.010
26.
Chen
,
L.-Q.
,
2002
, “
Phase-Field Models for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
113
140
.10.1146/annurev.matsci.32.112001.132041
27.
Zeng
,
J.
,
Kim
,
Y. H.
, and
Qin
,
S.
,
2023
, “
Bayesian Model Updating for Structural Dynamic Applications Combing Differential Evolution Adaptive Metropolis and Kriging Model
,”
J. Struct. Eng.
,
149
(
6
), p.
04023070
.10.1061/JSENDH.STENG-10837
28.
Kitahara
,
M.
,
Bi
,
S.
,
Broggi
,
M.
, and
Beer
,
M.
,
2021
, “
Bayesian Model Updating in Time Domain With Metamodel-Based Reliability Method
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
7
(
3
), p.
04021030
.10.1061/AJRUA6.0001149
29.
Beaumont
,
M. A.
,
Zhang
,
W.
, and
Balding
,
D. J.
,
2002
, “
Approximate Bayesian Computation in Population Genetics
,”
Genetics
,
162
(
4
), pp.
2025
2035
.10.1093/genetics/162.4.2025
30.
Csilléry
,
K.
,
Blum
,
M. G.
,
Gaggiotti
,
O. E.
, and
François
,
O.
,
2010
, “
Approximate Bayesian Computation (ABC) in Practice
,”
Trends Ecol. Evol.
,
25
(
7
), pp.
410
418
.10.1016/j.tree.2010.04.001
31.
Toni
,
T.
,
Welch
,
D.
,
Strelkowa
,
N.
,
Ipsen
,
A.
, and
Stumpf
,
M. P.
,
2009
, “
Approximate Bayesian Computation Scheme for Parameter Inference and Model Selection in Dynamical Systems
,”
J. R. Soc., Interface
,
6
(
31
), pp.
187
202
.10.1098/rsif.2008.0172
32.
Wood
,
S. N.
,
2010
, “
Statistical Inference for Noisy Nonlinear Ecological Dynamic Systems
,”
Nature
,
466
(
7310
), pp.
1102
1104
.10.1038/nature09319
33.
Gutmann
,
M. U.
,
Dutta
,
R.
,
Kaski
,
S.
, and
Corander
,
J.
,
2018
, “
Likelihood-Free Inference Via Classification
,”
Stat. Comput.
,
28
(
2
), pp.
411
425
.10.1007/s11222-017-9738-6
34.
Ardizzone
,
L.
,
Kruse
,
J.
,
Wirkert
,
S.
,
Rahner
,
D.
,
Pellegrini
,
E. W.
,
Klessen
,
R. S.
,
Maier-Hein
,
L.
,
Rother
,
C.
, and
Köthe
,
U.
,
2019
, “
Analyzing Inverse Problems With Invertible Neural Networks
,” The Seventh International Conference on Learning Representations (
ICLR
), New Orleans, LA, May
6
9
.https://openreview.net/pdf?id=rJed6j0cKX
35.
Kobyzev
,
I.
,
Prince
,
S. J.
, and
Brubaker
,
M. A.
,
2021
, “
Normalizing Flows: An Introduction and Review of Current Methods
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
11
), pp.
3964
3979
.10.1109/TPAMI.2020.2992934
36.
Ardizzone
,
L.
,
Lüth
,
C.
,
Kruse
,
J.
,
Rother
,
C.
, and
Köthe
,
U.
,
2019
, “
Guided Image Generation With Conditional Invertible Neural Networks
,” e-print
arXiv:1907.02392
.10.48550/arXiv.1907.02392
37.
Bister
,
T.
,
Erdmann
,
M.
,
Köthe
,
U.
, and
Schulte
,
J.
,
2022
, “
Inference of Cosmic-Ray Source Properties by Conditional Invertible Neural Networks
,”
Eur. Phys. J. C
,
82
(
2
), pp.
1
10
.10.1140/epjc/s10052-022-10138-x
38.
Zeng
,
J.
,
Todd
,
M. D.
, and
Hu
,
Z.
,
2023
, “
Probabilistic Damage Detection Using a New Likelihood-Free Bayesian Inference Method
,”
J. Civ. Struct. Health Monit.
,
13
(
2–3
), pp.
319
341
.10.1007/s13349-022-00638-5
39.
Zeng
,
J.
,
Todd
,
M. D.
, and
Hu
,
Z.
,
2023
, “
A Recursive Inference Method Based on Invertible Neural Network for Multi-Level Model Updating Using Video Monitoring Data
,”
Mech. Syst. Signal Process.
,
203
, p.
110736
.10.1016/j.ymssp.2023.110736
40.
Padmanabha
,
G. A.
, and
Zabaras
,
N.
,
2021
, “
Solving Inverse Problems Using Conditional Invertible Neural Networks
,”
J. Comput. Phys.
,
433
, p.
110194
.10.1016/j.jcp.2021.110194
41.
Qian
,
G.
,
Hu
,
Z.
, and
Todd
,
M. D.
,
2023
, “
Physics-Based Corrosion Reliability Analysis of Miter Gates Using Multi-Scale Simulations and Adaptive Surrogate Modeling
,”
Mech. Syst. Signal Process.
,
200
, p.
110619
.10.1016/j.ymssp.2023.110619
42.
Najera-Flores
,
D. A.
,
Qian
,
G.
,
Hu
,
Z.
, and
Todd
,
M. D.
,
2023
, “
Corrosion Morphology Prediction of Civil Infrastructure Using a Physics-Constrained Machine Learning Method
,”
Mech. Syst. Signal Process.
,
200
, p.
110515
.10.1016/j.ymssp.2023.110515
43.
Gutman
,
E. M.
,
1994
,
Mechanochemistry of Solid Surfaces
,
World Scientific Publishing Company
, Singapore.
44.
Gutman
,
E. M.
,
1998
,
Mechanochemistry of Materials
,
Cambridge International Science Publishing
, Cambridge, UK.
45.
Li
,
T.
,
Wu
,
J.
, and
Frankel
,
G.
,
2021
, “
Localized Corrosion: Passive Film Breakdown versus Pit Growth Stability, Part VI: Pit Dissolution Kinetics of Different Alloys and a Model for Pitting and Repassivation Potentials
,”
Corros. Sci.
,
182
, p.
109277
.10.1016/j.corsci.2021.109277
46.
Tokuda
,
S.
,
Muto
,
I.
,
Sugawara
,
Y.
, and
Hara
,
N.
,
2020
, “
Pit Initiation on Sensitized Type 304 Stainless Steel Under Applied Stress: Correlation of Stress, Cr-Depletion, and Inclusion Dissolution
,”
Corros. Sci.
,
167
, p.
108506
.10.1016/j.corsci.2020.108506
47.
Zhang
,
W.
,
Brown
,
B.
,
Young
,
D.
, and
Singer
,
M.
,
2021
, “
Pitting Mechanism of Mild Steel in Marginally Sour Environments—Part II: Pit Initiation Based on the Oxidation of the Chemisorbed Iron Sulfide Layers
,”
Corros. Sci.
,
184
, p.
109337
.10.1016/j.corsci.2021.109337
48.
Tokuda
,
S.
,
Muto
,
I.
,
Sugawara
,
Y.
, and
Hara
,
N.
,
2021
, “
The Role of Applied Stress in the Anodic Dissolution of Sulfide Inclusions and Pit Initiation of Stainless Steels
,”
Corros. Sci.
,
183
, p.
109312
.10.1016/j.corsci.2021.109312
49.
Suter
,
T.
,
Webb
,
E. G.
,
Böhni
,
H.
, and
Alkire
,
R. C.
,
2001
, “
Pit Initiation on Stainless Steels in 1 m Nacl With and Without Mechanical Stress
,”
J. Electrochem. Soc.
,
148
(
5
), p.
B174
.10.1149/1.1360204
50.
Frankel
,
G. S.
,
Li
,
T.
, and
Scully
,
J. R.
,
2017
, “
Perspective–Localized Corrosion: Passive Film Breakdown versus Pit Growth Stability
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
C180
C181
.10.1149/2.1381704jes
51.
Ascher
,
H.
, and
Feingold
,
H.
,
1984
,
Repairable Systems Reliability: Modeling, Inference, Misconceptions and Their Causes
, Marcel Dekker, New York.
52.
Li
,
X.
,
Zhao
,
Y.
,
Qi
,
W.
,
Wang
,
J.
,
Xie
,
J.
,
Wang
,
H.
,
Chang
,
L.
, et al.,
2019
, “
Modeling of Pitting Corrosion Damage Based on Electrochemical and Statistical Methods
,”
J. Electrochem. Soc.
,
166
(
15
), pp.
C539
C549
.10.1149/2.0401915jes
53.
Eick
,
B. A.
,
Treece
,
Z. R.
,
Spencer
,
B. F.
, Jr.
,
Smith
,
M. D.
,
Sweeney
,
S. C.
,
Alexander
,
Q. G.
, and
Foltz
,
S. D.
,
2018
, “
Automated Damage Detection in Miter Gates of Navigation Locks
,”
Struct. Control Health Monit.
,
25
(
1
), p.
e2053
.10.1002/stc.2053
54.
Vega
,
M. A.
,
Hu
,
Z.
,
Yang
,
Y.
,
Chadha
,
M.
, and
Todd
,
M. D.
,
2022
, “
Diagnosis, Prognosis, and Maintenance Decision Making for Civil Infrastructure: Bayesian Data Analytics and Machine Learning
,”
Structural Health Monitoring Based on Data Science Techniques
,
Springer
, New York.
55.
Qian
,
G.
,
Wu
,
Z.
,
Hu
,
Z.
, and
Todd
,
M. D.
,
2024
, “
Pitting Corrosion Monitoring Framework for Miter Gates with Digital Twin
,”
Proceedings of the 11th European Workshop on Structural Health Monitoring
, Potsdam, Germany, June
10
13
.
56.
Gourieroux
,
C.
,
Monfort
,
A.
, and
Renault
,
E.
,
1993
, “
Indirect Inference
,”
J. Appl. Econometrics
,
8
(
S1
), pp.
S85
S118
.10.1002/jae.3950080507
57.
Sisson
,
S. A.
,
Fan
,
Y.
, and
Tanaka
,
M. M.
,
2007
, “
Sequential Monte Carlo Without Likelihoods
,”
Proc. Natl. Acad. Sci.
,
104
(
6
), pp.
1760
1765
.10.1073/pnas.0607208104
58.
Park
,
J.-K.
,
Kwon
,
B.-K.
,
Park
,
J.-H.
, and
Kang
,
D.-J.
,
2016
, “
Machine Learning-Based Imaging System for Surface Defect Inspection
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
3
(
3
), pp.
303
310
.10.1007/s40684-016-0039-x
59.
Yun
,
J. P.
,
Shin
,
W. C.
,
Koo
,
G.
,
Kim
,
M. S.
,
Lee
,
C.
, and
Lee
,
S. J.
,
2020
, “
Automated Defect Inspection System for Metal Surfaces Based on Deep Learning and Data Augmentation
,”
J. Manuf. Syst.
,
55
, pp.
317
324
.10.1016/j.jmsy.2020.03.009
60.
Radev
,
S. T.
,
Mertens
,
U. K.
,
Voss
,
A.
,
Ardizzone
,
L.
, and
Köthe
,
U.
,
2022
, “
Bayesflow: Learning Complex Stochastic Models With Invertible Neural Networks
,”
IEEE Trans. Neural Networks Learn. Syst.
,
33
(
4
), pp.
1452
1466
.10.1109/TNNLS.2020.3042395
61.
Dinh
,
L.
,
Sohl-Dickstein
,
J.
, and
Bengio
,
S.
,
2017
, “
Density Estimation Using Real NVP
,” The Fifth International Conference on Learning Representation (
ICLR
), Toulon, France, Apr.
24
26
.https://openreview.net/pdf?id=HkpbnH9lx
62.
Foltz
,
S. D.
,
2017
, “
Investigation of Mechanical Breakdowns Leading to Lock Closures
,” ERDC-CERL Champaign United States, Report No.
TR-17-17
, Vicksburg, MI.https://apps.dtic.mil/sti/pdfs/AD1049227.pdf
63.
Kondo
,
Y.
,
1989
, “
Prediction of Fatigue Crack Initiation Life Based on Pit Growth
,”
Corrosion
,
45
(
1
), pp.
7
11
.10.5006/1.3577891
You do not currently have access to this content.