Abstract

A sparsity-based optimization approach is presented for determining the equations of motion of stochastically excited nonlinear structural systems. This is done by utilizing measured excitation-response realizations in the formulation of the related optimization problem, and by considering a library of candidate functions for representing the system governing dynamics. Note that a novel aspect of the approach relates to treating, also, systems endowed with fractional derivative elements. Clearly, this is of significant importance to a multitude of diverse applications in engineering mechanics taking into account the enhanced modeling capabilities of fractional calculus. Further, the fundamental theoretical and computational aspects of various representative, state-of-the-art, numerical schemes for solving the derived sparsity-based optimization problem are reviewed and discussed. A Bayesian compressive sampling approach that exhibits the additional advantage of quantifying the uncertainty of the estimates is considered as well. Furthermore, comparisons and a critical assessment of the employed numerical schemes are provided with respect to their efficacy in determining the nonlinear structural system equations of motion. In this regard, two illustrative numerical examples are considered pertaining to a nonlinear tuned mass-damper–inerter vibration control system and to a nonlinear electromechanical energy harvester, both endowed with fractional derivative elements.

References

1.
Lin
,
Y.-K. M.
,
1967
,
Probabilistic Theory of Structural Dynamics
,
McGraw-Hill
, New York.
2.
Li
,
J.
, and
Chen
,
J.
,
2009
,
Stochastic Dynamics of Structures
,
Wiley
, John Wiley & Sons (Asia), Singapore.
3.
Kougioumtzoglou
,
I. A.
,
Psaros
,
A. F.
, and
Spanos
,
P. D.
,
2024
,
Path Integrals in Stochastic Engineering Dynamics
,
Springer
, New York.
4.
Wang
,
W.-X.
,
Lai
,
Y.-C.
, and
Grebogi
,
C.
,
2016
, “
Data Based Identification and Prediction of Nonlinear and Complex Dynamical Systems
,”
Phys. Rep.
,
644
, pp.
1
76
.10.1016/j.physrep.2016.06.004
5.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.10.1038/s42254-021-00314-5
6.
Brunton
,
S.
, and
Kutz
,
J. N.
,
2022
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
,
Cambridge University Press
, Cambridge, UK.
7.
Ghadami
,
A.
, and
Epureanu
,
B. I.
,
2022
, “
Data-Driven Prediction in Dynamical Systems: Recent Developments
,”
Philos. Trans. R. Soc. A
,
380
(
2229
), p.
20210213
.10.1098/rsta.2021.0213
8.
North
,
J. S.
,
Wikle
,
C. K.
, and
Schliep
,
E. M.
,
2023
, “
A Review of Data-Driven Discovery for Dynamic Systems
,”
Int. Stat. Rev.
,
91
(
3
), pp.
464
492
.10.1111/insr.12554
9.
Clough
,
R.
, and
Penzien
,
J.
,
1975
,
Dynamics of Structures
,
McGraw-Hill NY
, New York.
10.
Kougioumtzoglou
,
I. A.
,
Petromichelakis
,
I.
, and
Psaros
,
A. F.
,
2020
, “
Sparse Representations and Compressive Sampling Approaches in Engineering Mechanics: A Review of Theoretical Concepts and Diverse Applications
,”
Probab. Eng. Mech.
,
61
, p.
103082
.10.1016/j.probengmech.2020.103082
11.
Lai
,
Z.
, and
Nagarajaiah
,
S.
,
2019
, “
Sparse Structural System Identification Method for Nonlinear Dynamic Systems With Hysteresis/Inelastic Behavior
,”
Mech. Syst. Signal Process.
,
117
, pp.
813
842
.10.1016/j.ymssp.2018.08.033
12.
Zhang
,
Y.
,
Duan
,
J.
,
Jin
,
Y.
, and
Li
,
Y.
,
2021
, “
Discovering Governing Equation From Data for Multi-Stable Energy Harvester Under White Noise
,”
Nonlinear Dyn.
,
106
(
4
), pp.
2829
2840
.10.1007/s11071-021-06960-9
13.
Liu
,
Q.
,
Cao
,
J.
,
Zhang
,
Y.
,
Zhao
,
Z.
,
Kerschen
,
G.
, and
Jing
,
X.
,
2023
, “
Interpretable Sparse Identification of a Bistable Nonlinear Energy Sink
,”
Mech. Syst. Signal Process.
,
193
, p.
110254
.10.1016/j.ymssp.2023.110254
14.
Tripura
,
T.
, and
Chakraborty
,
S.
,
2023
, “
A Sparse Bayesian Framework for Discovering Interpretable Nonlinear Stochastic Dynamical Systems With Gaussian White Noise
,”
Mech. Syst. Signal Process.
,
187
, p.
109939
.10.1016/j.ymssp.2022.109939
15.
Tripura
,
T.
,
Desai
,
A. S.
,
Adhikari
,
S.
, and
Chakraborty
,
S.
,
2023
, “
Probabilistic Machine Learning Based Predictive and Interpretable Digital Twin for Dynamical Systems
,”
Comput. Struct.
,
281
, p.
107008
.10.1016/j.compstruc.2023.107008
16.
Nayek
,
R.
,
Fuentes
,
R.
,
Worden
,
K.
, and
Cross
,
E. J.
,
2021
, “
On Spike-and-Slab Priors for Bayesian Equation Discovery of Nonlinear Dynamical Systems Via Sparse Linear Regression
,”
Mech. Syst. Signal Process.
,
161
, p.
107986
.10.1016/j.ymssp.2021.107986
17.
Fuentes
,
R.
,
Nayek
,
R.
,
Gardner
,
P.
,
Dervilis
,
N.
,
Rogers
,
T.
,
Worden
,
K.
, and
Cross
,
E.
,
2021
, “
Equation Discovery for Nonlinear Dynamical Systems: A Bayesian Viewpoint
,”
Mech. Syst. Signal Process.
,
154
, p.
107528
.10.1016/j.ymssp.2020.107528
18.
Oldham
,
K.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order
,
Elsevier
, New York .
19.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Machado
,
J. T.
,
2007
,
Advances in Fractional Calculus
, Vol. 4,
Springer
, Dordrecht, UK.
20.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.10.1115/1.4000563
21.
Di Paola
,
M.
,
Failla
,
G.
,
Pirrotta
,
A.
,
Sofi
,
A.
, and
Zingales
,
M.
,
2013
, “
The Mechanically Based Non-Local Elasticity: An Overview of Main Results and Future Challenges
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
371
(
1993
), p.
20120433
.10.1098/rsta.2012.0433
22.
Tarasov
,
V. E.
,
2017
, “
Fractional Mechanics of Elastic Solids: Continuum Aspects
,”
J. Eng. Mech.
,
143
(
5
), p.
D4016001
.10.1061/(ASCE)EM.1943-7889.0001074
23.
Di Paola
,
M.
,
Pirrotta
,
A.
, and
Valenza
,
A.
,
2011
, “
Visco-Elastic Behavior Through Fractional Calculus: An Easier Method for Best Fitting Experimental Results
,”
Mech. Mater.
,
43
(
12
), pp.
799
806
.10.1016/j.mechmat.2011.08.016
24.
Brunton
,
S.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci.
,
113
(
15
), pp.
3932
3937
.10.1073/pnas.1517384113
25.
Donoho
,
D.
,
2006
, “
Compressed Sensing
,”
IEEE Trans. Inf. Theory
,
52
(
4
), pp.
1289
1306
.10.1109/TIT.2006.871582
26.
Candès
,
E. J.
, and
Wakin
,
M. B.
,
2008
, “
An Introduction to Compressive Sampling
,”
IEEE Signal Process. Mag.
,
25
(
2
), pp.
21
30
.10.1109/MSP.2007.914731
27.
Champion
,
K.
,
Zheng
,
P.
,
Aravkin
,
A. Y.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2020
, “
A Unified Sparse Optimization Framework to Learn Parsimonious Physics-Informed Models From Data
,”
IEEE Access
,
8
, pp.
169259
169271
.10.1109/ACCESS.2020.3023625
28.
Mangan
,
N. M.
,
Kutz
,
J. N.
,
Brunton
,
S. L.
, and
Proctor
,
J. L.
,
2017
, “
Model Selection for Dynamical Systems Via Sparse Regression and Information Criteria
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2204
), p.
20170009
.10.1098/rspa.2017.0009
29.
Ben-Israel
,
A.
, and
Greville
,
T. N.
,
2006
,
Generalized Inverses: Theory and Applications
,
Springer Science & Business Media
, New York.
30.
Zhang
,
Y.
,
Comerford
,
L.
,
Kougioumtzoglou
,
I. A.
, and
Beer
,
M.
,
2018
, “
Lp-Norm Minimization for Stochastic Process Power Spectrum Estimation Subject to Incomplete Data
,”
Mech. Syst. Signal Process.
,
101
, pp.
361
376
.10.1016/j.ymssp.2017.08.017
31.
Zhang
,
Y.
,
Kougioumtzoglou
,
I. A.
, and
Kong
,
F.
,
2022
, “
Exploiting Expansion Basis Sparsity for Efficient Stochastic Response Determination of Nonlinear Systems Via the Wiener Path Integral Technique
,”
Nonlinear Dyn.
,
107
(
4
), pp.
3669
3682
.10.1007/s11071-021-07153-0
32.
Champion
,
K.
,
Lusch
,
B.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2019
, “
Data-Driven Discovery of Coordinates and Governing Equations
,”
Proc. Natl. Acad. Sci.
,
116
(
45
), pp.
22445
22451
.10.1073/pnas.1906995116
33.
Cortiella
,
A.
,
Park
,
K.-C.
, and
Doostan
,
A.
,
2021
, “
Sparse Identification of Nonlinear Dynamical Systems Via Reweighted l1-Regularized Least Squares
,”
Comput. Methods Appl. Mech. Eng.
,
376
, p.
113620
.10.1016/j.cma.2020.113620
34.
Hokanson
,
J. M.
,
Iaccarino
,
G.
, and
Doostan
,
A.
,
2023
, “
Simultaneous Identification and Denoising of Dynamical Systems
,”
SIAM J. Sci. Comput.
,
45
(
4
), pp.
A1413
A1437
.10.1137/22M1486303
35.
Schaeffer
,
H.
,
Caflisch
,
R.
,
Hauck
,
C. D.
, and
Osher
,
S.
,
2013
, “
Sparse Dynamics for Partial Differential Equations
,”
Proc. Natl. Acad. Sci.
,
110
(
17
), pp.
6634
6639
.10.1073/pnas.1302752110
36.
Eldar
,
Y. C.
, and
Kutyniok
,
G.
,
2012
,
Compressed Sensing: Theory and Applications
,
Cambridge University Press
, Cambridge, UK.
37.
Rish
,
I.
, and
Grabarnik
,
G.
,
2014
,
Sparse Modeling: Theory, Algorithms, and Applications
,
CRC Press
, Boca Raton, FL.
38.
Dumitrescu
,
B.
, and
Irofti
,
P.
,
2018
,
Dictionary Learning Algorithms and Applications
,
Springer
, Berlin, Germany.
39.
Pati
,
Y. C.
,
Rezaiifar
,
R.
, and
Krishnaprasad
,
P. S.
,
1993
, “
Orthogonal Matching Pursuit: Recursive Function Approximation With Applications to Wavelet Decomposition
,”
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers
, Pacific Grove, CA,
Nov. 1–3
, pp.
40
44
.10.1109/ACSSC.1993.342465
40.
Adler
,
J.
,
Rao
,
B. D.
, and
Kreutz-Delgado
,
K.
,
1996
, “
Comparison of Basis Selection Methods
,”
Conference Record of the 30th Asilomar Conference on Signals, Systems and Computers
, Vol. 1, Pacific Grove, CA,
Nov. 3–6
, pp.
252
257
.10.1109/ACSSC.1996.600867
41.
Bloomfield
,
P.
, and
Steiger
,
W. L.
,
1983
,
Least Absolute Deviations: Theory, Applications, and Algorithms
,
Springer
, Boston, MA.
42.
Daubechies
,
I.
,
Defrise
,
M.
, and
De Mol
,
C.
,
2004
, “
An Iterative Thresholding Algorithm for Linear Inverse Problems With a Sparsity Constraint
,”
Commun. Pure Appl. Math.: J. Issued Courant Inst. Math. Sci.
,
57
(
11
), pp.
1413
1457
.10.1002/cpa.20042
43.
Candes
,
E. J.
,
Wakin
,
M. B.
, and
Boyd
,
S. P.
,
2008
, “
Enhancing Sparsity by Reweighted l1 Minimization
,”
J. Fourier Anal. Appl.
,
14
(
5–6
), pp.
877
905
.10.1007/s00041-008-9045-x
44.
Xu
,
Z.
,
Zhang
,
H.
,
Wang
,
Y.
,
Chang
,
X.
, and
Liang
,
Y.
,
2010
, “
L1/2 Regularization
,”
Sci. Inf. Ser.
,
53
, pp.
1159
1169
.
45.
Rao
,
B. D.
, and
Kreutz-Delgado
,
K.
,
1999
, “
An Affine Scaling Methodology for Best Basis Selection
,”
IEEE Trans. Signal Process.
,
47
(
1
), pp.
187
200
.10.1109/78.738251
46.
Rao
,
B. D.
,
Engan
,
K.
,
Cotter
,
S. F.
,
Palmer
,
J.
, and
Kreutz-Delgado
,
K.
,
2003
, “
Subset Selection in Noise Based on Diversity Measure Minimization
,”
IEEE Trans. Signal Process.
,
51
(
3
), pp.
760
770
.10.1109/TSP.2002.808076
47.
Zhang
,
S.
, and
Lin
,
G.
,
2018
, “
Robust Data-Driven Discovery of Governing Physical Laws With Error Bars
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
474
(
2217
), p.
20180305
.10.1098/rspa.2018.0305
48.
Yang
,
Y.
,
Aziz Bhouri
,
M.
, and
Perdikaris
,
P.
,
2020
, “
Bayesian Differential Programming for Robust Systems Identification Under Uncertainty
,”
Proc. R. Soc. A
,
476
(
2243
), p.
20200290
.10.1098/rspa.2020.0290
49.
Chatterjee
,
T.
,
Shaw
,
A. D.
,
Friswell
,
M. I.
, and
Khodaparast
,
H. H.
,
2023
, “
Sparse Bayesian Machine Learning for the Interpretable Identification of Nonlinear Structural Dynamics: Towards the Experimental Data-Driven Discovery of a Quasi Zero Stiffness Device
,”
Mech. Syst. Signal Process.
,
205
, p.
110858
.10.1016/j.ymssp.2023.110858
50.
Champneys
,
M. D.
, and
Rogers
,
T. J.
,
2024
, “
Bindy–Bayesian Identification of Nonlinear Dynamics With Reversible-Jump Markov-Chain Monte Carlo
,” preprint arXiv:2408.08062.
51.
Ji
,
S.
,
Xue
,
Y.
, and
Carin
,
L.
,
2008
, “
Bayesian Compressive Sensing
,”
IEEE Trans. Signal Process.
,
56
(
6
), pp.
2346
2356
.10.1109/TSP.2007.914345
52.
MacKay
,
D. J.
,
1992
, “
Bayesian Interpolation
,”
Neural Comput.
,
4
(
3
), pp.
415
447
.10.1162/neco.1992.4.3.415
53.
Smith
,
M. C.
,
2020
, “
The Inerter: A Retrospective
,”
Annu. Rev. Control, Rob., Auton. Syst.
,
3
(
1
), pp.
361
391
.10.1146/annurev-control-053018-023917
54.
Wagg
,
D. J.
,
2021
, “
A Review of the Mechanical Inerter: Historical Context, Physical Realisations and Nonlinear Applications
,”
Nonlinear Dyn.
,
104
(
1
), pp.
13
34
.10.1007/s11071-021-06303-8
55.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper–Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
.10.1016/j.probengmech.2014.03.007
56.
Mavromatis
,
I. G.
, and
Kougioumtzoglou
,
I. A.
,
2023
, “
A Reduced-Order Wiener Path Integral Formalism for Determining the Stochastic Response of Nonlinear Systems With Fractional Derivative Elements
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
9
(
3
), p.
031201
.10.1115/1.4056902
57.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1991
, “
Simulation of Stochastic Processes by Spectral Representation
,”
ASME Appl. Mech. Rev.
,
44
(
4
), pp.
191
204
.10.1115/1.3119501
58.
Koh
,
C. G.
, and
Kelly
,
J. M.
,
1990
, “
Application of Fractional Derivatives to Seismic Analysis of Base-Isolated Models
,”
Earthquake Eng. Struct. Dyn.
,
19
(
2
), pp.
229
241
.10.1002/eqe.4290190207
59.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Dane Quinn
,
D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.10.1115/1.4026278
60.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2018
, “
Stochastic Response Determination and Optimization of a Class of Nonlinear Electromechanical Energy Harvesters: A Wiener Path Integral Approach
,”
Probab. Eng. Mech.
,
53
, pp.
116
125
.10.1016/j.probengmech.2018.06.004
61.
Petromichelakis
,
I.
,
Psaros
,
A. F.
, and
Kougioumtzoglou
,
I. A.
,
2021
, “
Stochastic Response Analysis and Reliability-Based Design Optimization of Nonlinear Electromechanical Energy Harvesters With Fractional Derivative Elements
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
7
(
1
), p.
010901
.10.1115/1.4049232
You do not currently have access to this content.