This paper presents a low-cost methodology to estimate the position of a pipeline inspection gauge (PIG). The environment in which the PIG navigates is inside the thick walls of a metallic pipeline, where it is not possible to receive a global positioning system (GPS) signal. As a consequence, it is necessary to use other means of navigation. A technique is presented in the paper that uses an inertial measurement unit (IMU), a speedometer, and a set of reference stations. A Kalman filter is used to fuse the measurements from the IMU, the speedometer, and the reference stations. The reference stations, with known GPS coordinates, are installed for every set interval to correct the PIG’s state estimate from the errors that accumulate due to the integration of the IMU measurements. The paper presents three scenarios. These scenarios differ in the way the update step of the Kalman filter is performed. Experimental results are presented along with a 100-run Monte Carlo test to verify the estimator’s consistency.

References

1.
Tolmasquim
,
S. T.
, and
Nieckele
,
A. O.
,
2008
, “
Design and Control of Pig Operations Through Pipelines
,”
J. Pet. Sci. Eng.
,
62
(
3–4
), pp. 
102
110
. 0920-410510.1016/j.petrol.2008.07.002
2.
Quarini
,
J.
, and
Shire
,
S.
,
2007
, “
A Review of Fluid-Driven Pipeline Pigs and Their Applications
,”
Proc. Ins. Mech. Eng., Part E: J. Proc. Mech. Eng.
,
221
(
1
), pp. 
1
10
.
3.
Zhu
,
X.
,
Zhang
,
S.
,
Li
,
X.
,
Wang
,
D.
, and
Yu
,
D.
,
2015
, “
Numerical Simulation of Contact Force on Bi-Directional Pig in Gas Pipeline: At the Early Stage of Pigging
,”
J. Nat. Gas Sci. Eng.
,
23
, pp. 
127
138
.10.1016/j.jngse.2015.01.034
4.
Podgorbunskikh
,
A. M.
,
2008
, “
Devices for Automated Regulation of the Velocity of In-Tube Pig Flaw Detectors (Review)
,”
Russ. J. Nondestr. Test.
,
44
(
5
), pp. 
343
350
. 1061-830910.1134/S1061830908050070
5.
Lee
,
D.-H.
,
Moon
,
H.
, and
Choi
,
H.-R.
,
2011
, “
Autonomous Navigation of In-Pipe Working Robot in Unknown Pipeline Environment
,”
2011 IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE Robotics and Automation Society
,
Shanghai, China
, pp. 
1559
1564
.
6.
Liu
,
Z.
, and
Krys
,
D.
,
2012
, “
The Use of Laser Range Finder on a Robotic Platform for Pipe Inspection
,”
Mech. Syst. Sig. Proc.
,
31
, pp. 
246
257
.10.1016/j.ymssp.2012.03.006
7.
Fallon
,
M. F.
,
Folkesson
,
J.
,
McClelland
,
H.
, and
Leonard
,
J. J.
,
2013
, “
Relocating Underwater Features Autonomously Using Sonar-Based SLAM
,”
IEEE J. Oceanic Eng.
,
38
(
3
), pp. 
500
513
. 0364-905910.1109/JOE.2012.2235664
8.
Jaradat
,
M. A.
, and
Abdel-Hafez
,
M. F.
,
2014
, “
Enhanced, Delay Dependent, Intelligent Fusion for INS/GPS Navigation System
,”
IEEE Sens. J.
,
14
(
5
), pp. 
1545
1554
.10.1109/JSEN.2014.2298896
9.
Abdel-Hafez
,
M. F.
,
2012
, “
On the GPS/IMU Sensors’ Noise Estimation for Enhanced Navigation Integrity
,”
Math. Comput. Simul.
,
86
, pp. 
101
117
. 0378-475410.1016/j.matcom.2010.03.005
10.
Zhao
,
H.
, and
Wang
,
Z.
,
2012
, “
Motion Measurement Using Inertial Sensors, Ultrasonic Sensors, and Magnetometers With Extended Kalman Filter for Data Fusion
,”
IEEE Sens. J.
,
12
(
5
), pp. 
943
953
. 1530-437X10.1109/JSEN.2011.2166066
11.
Saadeddin
,
K. M.
,
Abdel-Hafez
,
M. F.
, and
Jarrah
,
M. A.
,
2014
, “
Estimating Vehicle State by GPS/IMU Fusion With Vehicle Dynamics
,”
J. Intell. Rob. Syst.
,
74
(
2
), pp. 
147
172
. 0921-029610.1007/s10846-013-9960-1
12.
Abdel-Hafez
,
M. F.
,
2014
, “
Detection of Bias in GPS Satellites’ Measurements: A Probability Ratio Test Formulation
,”
IEEE Trans. Control Syst. Technol.
,
22
(
3
), pp. 
1166
1173
. 1063-653610.1109/TCST.2013.2267093
13.
Emran
,
B. J.
,
Al-Omari
,
M.
,
Abdel-Hafez
,
M. F.
, and
Jaradat
,
M. A.
,
2015
, “
Hybrid Low-Cost Approach for Quadrotor Attitude Estimation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p. 
031010
.10.1115/1.4028524
14.
Jin
,
S.
, and
Ping
,
Y.
,
2011
, “
Research on the Describing of Trajectory for Subsea Pipeline Based on Inertial Navigation System
,”
2011 IEEE Power Engineering and Automation Conference
,
IEEE Beijing Section
,
Wuhan, China
, pp. 
463
468
.
15.
Beiter
,
S.
,
Poquette
,
R.
,
Filipo
,
B. S.
, and
Goetz
,
W.
,
1998
, “
Precision Hybrid Navigation System for Varied Marine Applications
,”
Position Location and Navigation Symposium
,
IEEE
,
New York
, pp. 
316
323
.
16.
Sadovnychiy
,
S.
,
2000
, “
Automation System for Pipelines Plan Reconstruction, Industrial Electronics
,”
Proceedings of the IEEE International Symposium on ISIE
,
2
, pp. 
762
765
.
17.
Porter
,
T. R.
,
Knickmeyer
,
E. H.
, and
Wade
,
R. L.
,
1990
, “
Pipeline Geometry Pigging: Application of Strapdown INS
,”
Position Location and Navigation Symposium, IEEE PLANS ‘90
,
IEEE
,
Las Vegas, NV
, pp. 
353
358
.
18.
Santana
,
D. D. S.
,
Maruyama
,
N.
, and
Furukawa
,
M. C.
,
2010
, “
Estimation of Trajectories of Pipeline PIGs Using Inertial Measurements and Nonlinear Sensor Fusion
,”
9th IEEE/IAS International Conference on Industry Applications (INDUSCON)
,
IEEE South Brazil Section
,
Sao Paulo, Brazil
, pp. 
1
6
.
19.
Santana
,
D. D. S.
,
2011
, “
Navegação Terrestre Usando Unidade de Medição Inercial de Baixo Desempenho e Fusão Sensorial com Filtro de Kalman Adaptativo Suavizado
,” Ph.D. Dissertation,
EPUSP
, São Paulo, Brazil.
20.
Bar-Shalom
,
Y.
, and
Li
,
X. R.
,
2001
,
Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software
,
John Wiley and Sons
,
Hoboken, NJ
.
21.
MIDG II INS/GPS Combined Inertial Navigation and GPS Unit, Omni Instruments Inc.
,
2015
, http://www.omniinstruments.co.uk/products/product/moredetails/midg.id107.html, Jan. 2015.
You do not currently have access to this content.