Due to their unique physicochemical properties, nanomaterials have the potential to interact with living organisms in novel ways. Nanomaterial variants are too numerous to be screened for toxicity individually by traditional animal testing. Existing data on the toxicity of inhaled nanomaterials in animal models are sparse in comparison to the number of potential factors that may affect toxicity. This paper presents meta-analysis-based risk models developed with the machine-learning technique, random forests (RFs), to determine the relative contribution of different physical and chemical attributes on observed toxicity. The findings from this analysis indicate that carbon nanotube (CNT) impurities explain at most 30% of the variance in pulmonary toxicity as measured by polymorphonuclear neutrophils (PMNs) count. Titanium dioxide nanoparticle size and aggregation affected the observed toxic response by less than 10%. Differences in observed effects for a group of metal oxide nanoparticles associated with differences in Gibbs free energy on lactate dehydrogenase (LDH) concentrations amount to only 4% to the total variance.

References

1.
Auffan
,
M.
,
Rose
,
J.
,
Bottero
,
J.-Y.
,
Lowry
,
G. V.
,
Jolivet
,
J.-P.
, and
Wiesner
,
M. R.
,
2009
, “
Towards a Definition of Inorganic Nanoparticles From an Environmental, Health and Safety Perspective
,”
Nat. Nanotechnol.
,
4
(
10
), pp. 
634
641
. 1748-338710.1038/nnano.2009.242
2.
Limits for Air Contaminants
,
2014
, 29 C.F.R. § 1910.1000(a).
3.
NIOSH
,
2011
, “
Current Intelligence Bulletin 63: Occupational Exposure to Titanium Dioxide
,” DHHS (NIOSH) Publication No. 2011-160.
4.
NIOSH
,
2013
, “
Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers
,” DHHS (NIOSH) Publication No. 2013-145.
5.
Nygaard
,
U. C.
,
Hansen
,
J. S.
,
Samuelsen
,
M.
,
Alberg
,
T.
,
Marioara
,
C. D.
, and
Løvik
,
M.
,
2009
, “
Single-Walled and Multi-Walled Carbon Nanotubes Promote Allergic Immune Responses in Mice
,”
Toxicol. Sci.
,
109
(
1
), pp. 
113
123
.10.1093/toxsci/kfp057
6.
Warheit
,
D. B.
,
Sayes
,
C. M.
, and
Reed
,
K. L.
,
2009
, “
Nanoscale and Fine Zinc Oxide Particles: Can in Vitro Assays Accurately Forecast Lung Hazards Following Inhalation Exposures?
Environ. Sci. Technol.
,
43
(
20
), pp. 
7939
7945
. 0013-936X10.1021/es901453p
7.
Gernand
,
J.
, and
Casman
,
E.
,
2013
, “
A Meta-Analysis of Carbon Nanotube Pulmonary Toxicity Studies—How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes
,”
Risk Anal.
,
34
(
3
), pp. 
583
597
. 0272-433210.1111/risa.2014.34.issue-3
8.
Sayes
,
C.
, and
Ivanov
,
I.
,
2010
, “
Comparative Study of Predictive Computational Models for Nanoparticle-Induced Cytotoxicity
,”
Risk Anal.
,
30
(
11
), pp. 
1723
1734
. 0272-433210.1111/j.1539-6924.2010.01438.x
9.
Puzyn
,
T.
,
Rasulev
,
B.
,
Gajewicz
,
A.
,
Hu
,
X.
,
Dasari
,
T. P.
,
Michalkova
,
A.
,
Hwang
,
H.-M.
,
Toropov
,
A.
,
Leszczynska
,
D.
, and
Leszczynski
,
J.
,
2011
, “
Using Nano-QSAR to Predict the Cytotoxicity of Metal Oxide Nanoparticles
,”
Nat. Nanotechnol.
,
6
(
Feb.
), pp. 
175
178
.
10.
Fourches
,
D.
,
Pu
,
D.
, and
Tropsha
,
A.
,
2011
, “
Exploring Quantitative Nanostructure-Activity Relationships (QNAR) Modeling as a Tool for Predicting Biological Effects of Manufactured Nanoparticles
,”
Comb. Chem. High T. Scr.
,
14
(
3
), pp. 
217
225
. 1386-2073
11.
Pauluhn
,
J.
,
2010
, “
Multi-Walled Carbon Nanotubes (Baytubes): Approach for Derivation of Occupational Exposure Limit
,”
Regul. Toxicol. Pharm.
,
57
(
1
), pp. 
78
89
. 0273-230010.1016/j.yrtph.2009.12.012
12.
Muller
,
J.
,
Huaux
,
F.
,
Moreau
,
N.
,
Misson
,
P.
,
Heilier
,
J.-F.
,
Delos
,
M.
,
Arras
,
M.
,
Fonseca
,
A.
,
Nagy
,
J. B.
, and
Lison
,
D.
,
2005
, “
Respiratory Toxicity of Multi-Wall Carbon Nanotubes
,”
Tox. App. Pharma.
,
207
(
3
), pp. 
221
231
. 0041-008X10.1016/j.taap.2005.01.008
13.
Shvedova
,
A. A.
,
Kisin
,
E.
,
Murray
,
A. R.
,
Johnson
,
V. J.
,
Gorelik
,
O.
,
Arepalli
,
S.
,
Hubbs
,
A. F.
,
Mercer
,
R. R.
,
Keohavong
,
P.
,
Sussman
,
N.
,
Jin
,
J.
,
Yin
,
J.
,
Stone
,
S.
,
Chen
,
B. T.
,
Deye
,
G.
,
Maynard
,
A.
,
Castranova
,
V.
,
Baron
,
P. A.
, and
Kagan
,
V. E.
,
2008
, “
Inhalation vs. Aspiration of Single-Walled Carbon Nanotubes in C57BL/6 Mice: Inflammation, Fibrosis, Oxidative Stress, and Mutagenesis
,”
Am. J. Physiol.-Lung C
,
295
(
4
), pp. 
L552
L565
.10.1152/ajplung.90287.2008
14.
Porter
,
D. W.
,
Hubbs
,
A. F.
,
Mercer
,
R. R.
,
Wu
,
N.
,
Wolfarth
,
M. G.
,
Sriram
,
K.
,
Leonard
,
S.
,
Battelli
,
L.
,
Schwegler-Berry
,
D.
,
Friend
,
S.
,
Andrew
,
M.
,
Chen
,
B. T.
,
Tsuruoka
,
S.
,
Endo
,
M.
, and
Castranova
,
V.
,
2010
, “
Mouse Pulmonary Dose- and Time Course-Responses Induced by Exposure to Multi-Walled Carbon Nanotubes
,”
Toxicology
,
269
(
2–3
), pp. 
136
147
. 0300-483X10.1016/j.tox.2009.10.017
15.
Inoue
,
K.-I.
,
Takano
,
H.
,
Koike
,
E.
,
Yanagisawa
,
R.
,
Sakurai
,
M.
,
Tasaka
,
S.
,
Ishizaka
,
A.
, and
Shimada
,
A.
,
2008
, “
Effects of Pulmonary Exposure to Carbon Nanotubes on Lung and Systemic Inflammation With Coagulatory Disturbance Induced by Lipopolysaccharide in Mice
,”
Exp. Biol. Med.
,
233
(
12
), pp. 
1583
1590
. 0071-338410.3181/0805-RM-179
16.
Shvedova
,
A. A.
,
Kisin
,
E. R.
,
Mercer
,
R.
,
Murray
,
A. R.
,
Johnson
,
V. J.
,
Potapovich
,
A. I.
,
Tyurina
,
Y. Y.
,
Gorelik
,
O.
,
Arepalli
,
S.
,
Schwegler-Berry
,
D.
,
Hubbs
,
A. F.
,
Antonini
,
J.
,
Evans
,
D. E.
,
Ku
,
B.-K.
,
Ramsey
,
D.
,
Maynard
,
A.
,
Kagan
,
V. E.
,
Castranova
,
V.
, and
Baron
,
P.
,
2005
, “
Unusual Inflammatory and Fibrogenic Pulmonary Responses to Single-Walled Carbon Nanotubes in Mice
,”
Am. J. Physiol.-Lung C
,
289
(
5
), pp. 
L698
L708
.10.1152/ajplung.00084.2005
17.
Shvedova
,
A. A.
,
Kisin
,
E. R.
,
Murray
,
A. R.
,
Gorelik
,
O.
,
Arepalli
,
S.
,
Castranova
,
V.
,
Young
,
S.
,
Gao
,
F.
,
Tyurina
,
Y. Y.
,
Oury
,
T. D.
, and
Kagan
,
V. E.
,
2007
, “
Vitamin E Deficiency Enhances Pulmonary Inflammatory Response and Oxidative Stress Induced by Single Walled Carbon Nanotubes in C57BL/6 Mice
,”
Toxicol. Appl. Pharmacol.
,
221
(
3
), pp. 
339
348
. 0041-008X10.1016/j.taap.2007.03.018
18.
Warheit
,
D. B.
,
Laurence
,
B. R.
,
Reed
,
K. L.
,
Roach
,
D. H.
,
Reynolds
,
G. A. M.
, and
Webb
,
T. R.
,
2004
, “
Comparative Pulmonary Toxicity Assessment of Single-Wall Carbon Nanotubes in Rats
,”
Toxicol. Sci.
,
77
(
1
), pp. 
117
125
.10.1093/toxsci/kfg228
19.
Muller
,
J.
,
Huaux
,
F.
,
Fonseca
,
A.
,
Nagy
,
J. B.
,
Moreau
,
N.
,
Delos
,
M.
,
Raymundo-Pinero
,
E.
,
Beguin
,
F.
,
Kirsch-Volders
,
M.
,
Fenoglio
,
I.
,
Fubini
,
B.
, and
Lison
,
D.
,
2008
, “
Structural Defects Play a Major Role in the Acute Lung Toxicity of Multiwall Carbon Nanotubes: Toxicological Aspects
,”
Chem. Res. Toxicol.
,
21
(
9
), pp. 
1698
1705
. 0893-228X10.1021/tx800101p
20.
Ellinger-Ziegelbauer
,
H.
, and
Pauluhn
,
J.
,
2009
, “
Pulmonary Toxicity of Multi-Walled Carbon Nanotubes (Baytubes) Relative to A-Quartz Following a Single 6 h Inhalation Exposure of Rats and a 3 Months Post-Exposure Period
,”
Toxicology
,
266
(
1–3
), pp. 
16
29
. 0300-483X10.1016/j.tox.2009.10.007
21.
Bermudez
,
E.
,
Mangum
,
J. B.
,
Asgharian
,
B.
,
Wong
,
B. A.
,
Reverdy
,
E. E.
,
Janszen
,
D. B.
,
Hext
,
P. M.
,
Warheit
,
D. B.
, and
Everitt
,
J. I.
,
2002
, “
Long-Term Pulmonary Responses of Three Laboratory Rodent Species to Subchronic Inhalation of Pigmentary Titanium Dioxide Particles
,”
Toxicol. Sci.
,
70
(
1
), pp. 
86
97
.10.1093/toxsci/70.1.86
22.
Grassian
,
V. H.
,
O’shaughnessy
,
P. T.
,
Adamcakova-Dodd
,
A.
,
Pettibone
,
J. M.
, and
Thorne
,
P. S.
,
2007
, “
Inhalation Exposure Study of Titanium Dioxide Nanoparticles With a Primary Particle Size of 2 to 5 nm
,”
Environ. Health Perspect.
,
115
(
3
), pp. 
397
402
. 0091-676510.1289/ehp.9469
23.
Nemmar
,
A.
,
Melghit
,
K.
, and
Ali
,
B. H.
,
2008
, “
The Acute Proinflammatory and Prothrombotic Effects of Pulmonary Exposure to Rutile TiO2 Nanorods in Rats
,”
Exp. Biol. Med.
,
233
(
5
), pp. 
610
619
. 0071-338410.3181/0706-RM-165
24.
Oberdorster
,
G.
,
Ferin
,
J.
, and
Lehnert
,
B. E.
,
1994
, “
Correlation Between Particle Size, in Vivo Particle Persistence, and Lung Injury
,”
Environ. Health Perspect.
,
102
(
Suppl 5
), pp. 
173
179
. 0091-676510.1289/ehp.94102s5173
25.
Warheit
,
D. B.
,
Webb
,
T. R.
,
Sayes
,
C. M.
,
Colvin
,
V. L.
, and
Reed
,
K. L.
,
2006
, “
Pulmonary Instillation Studies With Nanoscale TiO2 Rods and Dots in Rats: Toxicity is Not Dependent Upon Particle Size and Surface Area
,”
Toxicol. Sci.
,
91
(
1
), pp. 
227
236
.10.1093/toxsci/kfj140
26.
Renwick
,
L. C.
,
2004
, “
Increased Inflammation and Altered Macrophage Chemotactic Responses Caused by Two Ultrafine Particle Types
,”
Occup. Environ. Med.
,
61
(
5
), pp. 
442
447
. 1351-071110.1136/oem.2003.008227
27.
Rehn
,
B.
,
Seiler
,
F.
,
Rehn
,
S.
,
Bruch
,
J.
, and
Maier
,
M.
,
2003
, “
Investigations on the Inflammatory and Genotoxic Lung Effects of Two Types of Titanium Dioxide: Untreated and Surface Treated
,”
Tox. App. Pharma.
,
189
(
2
), pp. 
84
95
. 0041-008X10.1016/S0041-008X(03)00092-9
28.
Osier
,
M.
, and
Baggs
,
R. B.
, and
Oberdörster
,
G.
,
1997
, “
Intratracheal Instillation Versus Intratracheal Inhalation: Influence of Cytokines on Inflammatory Response
,”
Environ. Heal. Perspect.
,
105
(
S5
), pp. 
1265
1271
.10.1289/ehp.97105s51265
29.
Warheit
,
D. B.
,
Hoke
,
R. A.
,
Finlay
,
C.
,
Donner
,
E. M.
,
Reed
,
K. L.
, and
Sayes
,
C. M.
,
2007
, “
Development of a Base Set of Toxicity Tests Using Ultrafine TiO2 Particles as a Component of Nanoparticle Risk Management
,”
Toxicol. Lett.
,
171
(
3
), pp. 
99
110
. 0378-427410.1016/j.toxlet.2007.04.008
30.
Warheit
,
D. B.
,
Webb
,
T. R.
,
Reed
,
K. L.
,
Frerichs
,
S.
, and
Sayes
,
C. M.
,
2007
, “
Pulmonary Toxicity Study in Rats With Three Forms of Ultrafine-TiO2Particles: Differential Responses Related to Surface Properties
,”
Toxicology
,
230
(
1
), pp. 
90
104
. 0300-483X10.1016/j.tox.2006.11.002
31.
Warheit
,
D. B.
,
Sayes
,
C. M.
,
Frame
,
S. R.
, and
Reed
,
K. L.
,
2010
, “
Pulmonary Exposures to Sepiolite Nanoclay Particulates in Rats: Resolution Following Multinucleate Giant Cell Formation
,”
Toxicol. Lett.
,
192
(
3
), pp. 
286
293
. 0378-427410.1016/j.toxlet.2009.11.006
32.
Kobayashi
,
N.
,
Naya
,
M.
,
Endoh
,
S.
,
Maru
,
J.
,
Yamamoto
,
K.
, and
Nakanishi
,
J.
,
2009
, “
Comparative Pulmonary Toxicity Study of Nano-TiO2 Particles of Different Sizes and Agglomerations in Rats: Different Short- and Long-Term Post-Instillation Results
,”
Toxicology
,
264
(
1–2
), pp. 
110
118
. 0300-483X10.1016/j.tox.2009.08.002
33.
Sayes
,
C. M.
,
Reed
,
K. L.
, and
Warheit
,
D. B.
,
2007
, “
Assessing Toxicity of Fine and Nanoparticles: Comparing In Vitro Measurements to In Vivo Pulmonary Toxicity Profiles
,”
Toxicol. Sci.
,
97
(
1
), pp. 
163
180
.10.1093/toxsci/kfm018
34.
Gosens
,
I.
,
Post
,
J. A.
,
de la Fonteyne
,
L. J. J.
,
Jansen
,
E. H. J. M.
,
Geus
,
J. W.
,
Cassee
,
F. R.
, and
de Jong
,
W. H.
,
2010
, “
Impact of Agglomeration State of Nano- and Submicron Sized Gold Particles on Pulmonary Inflammation
,”
Part. Fibre Toxicol.
,
7
(
1
),
37
p.10.1186/1743-8977-7-37
35.
Gernand
,
J.
,
2012
, “
Carbon Nanotube (CNT) Pulmonary Toxicity Data Set
,” Available: http://nanohub.org/resources/13515, accessed: Jan. 1, 2012.
36.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp. 
5
32
. 0885-612510.1023/A:1010933404324
37.
Breiman
,
L.
,
Friedman
,
J.
,
Stone
,
C.
, and
Olshen
,
R. A.
,
1984
,
Classification and Regression Trees
,
Chapman and Hall/CRC
,
New York
.
38.
Pauluhn
,
J.
,
2010
, “
Subchronic 13-Week Inhalation Exposure of Rats to Multiwalled Carbon Nanotubes: Toxic Effects are Determined by Density of Agglomerate Structures, Not Fibrillar Structures
,”
Toxicol. Sci.
,
113
(
1
), pp. 
226
242
.10.1093/toxsci/kfp247
39.
Yu
,
L. E.
,
Yung
,
L.-Y. L.
,
Ong
,
C.
,
Tan
,
Y.-L.
,
Balasubramaniam
,
K. S.
,
Hartono
,
D.
,
Shui
,
G.
,
Wenk
,
M. R.
, and
Ong
,
W.
,
2007
, “
Translocation and Effects of Gold Nanoparticles After Inhalation Exposure in Rats
,”
Nanotoxicology
,
1
(
1–4
), pp. 
234
241
.
40.
Sayes
,
C.
, and
Ivanov
,
I.
,
2010
, “
Comparative Study of Predictive Computational Models for Nanoparticle-Induced Cytotoxicity
,”
Risk Anal.
,
30
(
11
), pp. 
1723
1734
. 0272-433210.1111/j.1539-6924.2010.01438.x
41.
Fourches
,
D.
,
Pu
,
D.
,
Tassa
,
C.
,
Weissleder
,
R.
,
Shaw
,
S. Y.
,
Mumper
,
R. J.
, and
Tropsha
,
A.
,
2010
, “
Quantitative Nanostructure-Activity Relationship Modeling
,”
ACS Nano
,
4
(
10
), pp. 
5703
5712
. 1936-085110.1021/nn1013484
You do not currently have access to this content.