Solar energy storage using a closed loop thermochemical system based on the reversible dissociation of ammonia, has been investigated at the Australian National University for over two decades. Theoretical and system studies have indicated that large scale systems offer reasonable thermodynamic and economic performance. Experimental investigation has confirmed the technical viability of the concept. This investigation has looked at the effect of operating parameters on the thermal output achievable from the heat recovery process. Pressure, massflow and inlet gas composition were all found to have significant effects on the output achievable. Maximizing the thermal output via adjustment of reactor wall temperature profiles indicates that the average temperature of the reactor walls is more significant than the shape of the profile. This investigation has indicated the potential and provided the foundations for future exergo-economic optimizations of the system.

1.
Reller
,
A.
(Ed.),
1999
,
Sol. Energy
,
65
, p.
1
80
.
2.
Levy
,
M.
,
Levitan
,
R.
,
Rosin
,
H.
, and
Rubin
,
R.
,
1993
, “
Solar Energy Storage Via a Closed Loop Chemical Heat Pipe
,”
Sol. Energy
,
50
, p.
179
179
.
3.
Abele, M., Woerner, A., Brose, G., Buck, R., and Tamme, R., 1996, “Test Results of a Receiver Reactor for Solar Methane Reforming and Aspects of Further Applications of this Technology,” Proc., 8th International Symposium on Solar Thermal Concentrating Technologies, M. Becker and M. Boehmer, Eds., C. F. Mueller, Koeln, Germany, Vol. 3: Thermo- and Photo-Chemistry, Materials Production.
4.
Woerner
,
A.
, and
Tamme
,
R.
,
1998
, “
CO2 Reforming of Methane in a Solar Driven Volumetric Receiver-Reactor
,”
Catal. Today
,
46
, pp.
165
174
.
5.
Edwards, J. H., Duffy, G., Benito, R., Do, T., Dave, N., McNaughton, R., Badwal, S., Jiang, S. P., and Giddey, S., 2000, “CSIRO’s Solar Thermal: Fossil Energy Hybrid Technology for Advanced Power Generation,” Proc., Solar Thermal 2000—10th SolarPACES Int. Symposium on Solar Thermal Concentrating Technologies, H. Kreetz, K. Lovegrove, and W. Meike, Eds., Sydney, Australia, pp. 27–32.
6.
Luzzi
,
A.
,
Lovegrove
,
K.
,
Filipi
,
E.
,
Fricker
,
H.
,
Schmitz-Goeb
,
M.
,
Chandapillai
,
M.
, and
Kaneff
,
S.
,
1997
, “
Base-Load Solar Power Using the ‘Haber-Bosch’ Process,” Final Report
, Australian National University, Canberra.
7.
Lovegrove
,
K.
,
Luzzi
,
A.
,
McCann
,
M.
, and
Freitag
,
O.
,
1999
, “
Exergy Analysis of Ammonia-Based Solar Thermochemical Power Systems
,”
Sol. Energy
,
66
, pp.
103
115
.
8.
Lovegrove
,
K.
,
Kreetz
,
H.
, and
Luzzi
,
A.
,
1999
, “
The First Ammonia Based Solar Thermochemical Energy Storage Demonstration
,”
J. Phys. IV
,
9
, pp.
581
586
.
9.
Lovegrove
,
K.
,
Luzzi
,
A.
, and
Kreetz
,
H.
,
1999
, “
A Solar Driven Ammonia Based Thermochemical Energy Storage System
,”
Sol. Energy
,
67
, pp.
309
316
.
10.
Kreetz
,
H.
, and
Lovegrove
,
K.
,
1999
, “
Theoretical Analysis and Experimental Results of a 1 kW Chem Synthesis Reactor for a Solar Thermochemical Energy Storage System
,”
Sol. Energy
,
67
, pp.
287
296
.
11.
Bejan, A., Tsatsaronis, G., and Moran, M., 1996, Thermal Design & Optimization, Vol. 1, Wiley, New York.
12.
Lovegrove
,
K.
,
1993
, “
Thermodynamic Limits on the Performance of a Solar Thermochemical Energy Storage System
,”
Int. J. Energy Res.
,
17
, pp.
817
829
.
13.
Appl
,
M.
,
1992
, “
Modern Ammonia Technology—Where Have We Got To, Where Are We Going?
,”
Nitrogen
,
199
, pp.
46
75
.
14.
Louis, P., 1995, “World ammonia supply and demand,” Proc., AIChE Ammonia Safety Symposium, Tucson, AZ.
15.
Vancini, C. A., 1971, Synthesis of Ammonia, Macmillan Press Ltd., London.
16.
Ullmann’s Encyclopedia of Industrial Chemistry (1996), Wiley-VCH, Weinheim.
17.
Dybkjaer, I., 1995, “Ammonia Production Processes,” in Ammonia-Catalysis and Manufacture, H. T. Anders Nielsen, Ed., Berlin, Springer-Verlag, Germany, pp. 199–328.
18.
Appl, M., 1997, “The Haber-Bosch Heritage: The Ammonia Production Technology,” Proc., 50th Anniversary of the IFA Technical Conference, Sevilla, Spain.
19.
Dybkjaer, I., 1984, “Energy Consumption in Ammonia Production. Influence of External Conditions and Key Process Parameters,” Proc. ISMA/IFA Technical Conference, Paris, France, p. 26.
20.
Filippi, E., Luzzi, A., and Lovegrove, K., 1997, “Ammonia Synthesis in Solar Ammonia Power Plants,” Proc., 2nd Int. Symposium on Solar Chemistry, PSI, Villigen, Switzerland.
21.
Richardson
,
J. T.
,
Paripatyadar
,
S. A.
, and
Shen
,
J. C.
,
1988
, “
Dynamics of a Sodium Heat Pipe Reforming Reactor
,”
AIChE J.
,
34
, pp.
743
752
.
22.
Lovegrove
,
K.
,
1996
, “
High Pressure Ammonia Dissociation Experiments for Solar Energy Transport and Storage
,”
Int. J. Energy Res.
,
20
, pp.
965
978
.
23.
Williams
,
O. M.
,
1976
, “
Thermodynamic Data for the Ammonia Synthesis and Dissociation Reactions,” Technical Report
, EC-TR-11, Dept. of Eng. Physics, RSPhysS, ANU, Canberra.
24.
Vargaftik, N. B., 1983, Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures, Hemisphere Publishing, Washington, D.C.
You do not currently have access to this content.