In this paper, emphasis is put on the design of a neural network (NN) to model the direct solar irradiance. Since, unfortunately, a neural network is not a statistician-in-a-box, building a NN for a particular problem is a nontrivial task. As a consequence, we argue that in order to properly model the direct solar irradiance, a systematic methodology must be employed. For this purpose, we propose a two-step approach to building the NN model. The first step deals with a probabilistic interpretation of the NN learning by using Bayesian techniques. The Bayesian approach to modeling offers significant advantages over the classical NN learning process. Among others, one can cite (i) automatic complexity control of the NN using all the available data and (ii) selection of the most important input variables. The second step consists of using a new sensitivity analysis-based pruning method in order to infer the optimal NN structure. We show that the combination of the two approaches makes the practical implementation of the Bayesian techniques more reliable.

1.
Batlles
,
F. J.
,
Rubio
,
M. A.
,
Tovar
,
J.
,
Olmo
,
F. J.
, and
Alados-Arboledas
,
L.
, 2000, “
Empirical Modelling of Hourly Direct Irradiance by Means of Hourly Global Irradiance
,”
Energy
0360-5442,
25
, pp.
675
688
.
2.
Wong
,
L. T.
, and
Chow
,
W. K.
, 2001, “
Solar Radiation Model
,”
Appl. Energy
0306-2619,
69
, pp.
191
224
.
3.
Louche
,
A.
,
Notton
,
G.
,
Poggi
,
P.
, and
Simonot
,
G.
, 1991, “
Correlations for Direct Normal and Global Horizontal Irradiation on French Mediterranean Site
,”
Sol. Energy
0038-092X,
46
, pp.
261
266
.
4.
Perez
,
R.
,
Seals
,
R.
,
Zelenka
,
A.
, and
Ineichen
,
P.
, 1990, “
Climatic Evaluation of Models That Predict Hourly Direct Irradiance From Hourly Global Irradiance: Prospects for Performance Improvements
,”
Sol. Energy
0038-092X,
44
, pp.
99
108
.
5.
Hottel
,
H. C.
, 1976, “
A Simple Model for Estimating the Transmittance of Direct Solar Radiation Through Clear Atmospheres
,”
Sol. Energy
0038-092X,
18
, pp.
129
134
.
6.
Mohandes
,
M.
,
Rehman
,
S.
, and
Halawani
,
T. O.
, 1998, “
Estimation of Global Solar Radiation Using Artificial Neural Networks
,”
Renewable Energy
0960-1481,
14
, pp.
179
184
.
7.
Hontoria
,
L.
,
Aguilera
,
J.
, and
Zufiria
,
P.
, 2002, “
Generation of Hourly Irradiation Synthetic Series Using the Neural Network Multilayer Preceptron
,”
Sol. Energy
0038-092X,
72
(
5
), pp.
441
446
.
8.
Haykin
,
S.
, 1999,
Neural Networks—A Comprehensive Foundation
,
Prentice-Hall
,
Englewood Cliffs
, NJ.
9.
Bishop
,
C. M.
, 1995,
Neural Networks for Pattern Recognition
,
Oxford University Press
,
London
.
10.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
, 1989, “
Multilayer Feedforward Networks are Universal approximators
,”
Neural Networks
0893-6080,
2
(
5
), pp.
359
366
.
11.
Reed
,
R.
, 1996, “
Pruning Algorithms—A Survey
,”
IEEE Trans. Neural Netw.
1045-9227,
4
(
5
), pp.
740
747
.
12.
MacKay
,
D. J. C.
, 2003,
Information Theory, Inference, and Learning Algorithms
,
Cambridge University Press
,
Cambridge, England
.
13.
MacKay
,
D. J. C.
, 1994, “
Bayesian Non-Linear Modelling for the Prediction Competition
,”
ASHRAE Trans.
0001-2505,
100
(
2
), pp.
1053
1062
.
14.
Lopez
,
G.
,
Batlles
,
F. J.
, and
Tovar-Pescador
,
J.
, 2005, “
Selection of Input Parameters to Model Direct Solar Irradiance by Using Artificial Neural Networks
,”
Energy
0360-5442,
30
(
9
), pp.
1675
1684
, http://www.sciencedirect.comhttp://www.sciencedirect.com
15.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K.
, 1999, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
,”
Technometrics
0040-1706,
41
(
1
), pp.
39
56
.
16.
Malakoff
,
D. M.
, 1999, “
Bayes Offer ‘New’ Way to Make Sense of Numbers
,”
Science
0036-8075,
286
, pp.
1460
1464
.
17.
Cox
,
R. T.
, 1946, “
Probability, Frequency and Reasonable Expectation
,”
Am. J. Phys.
0002-9505,
14
, pp.
1
13
.
18.
Bayes
,
T.
, 1763, “
An Essay Towards Solving a Problem in the Doctrine of Chances
,”
Philos. Trans. R. Soc. London
0370-2316,
53
, pp.
370
418
.
19.
de Laplace
,
P. S.
, 1812,
Théorie Analytique des Probabilités
,
Courcier Imprimeur
,
Paris
.
20.
Sivia
,
D. S.
, 1996,
Data Analysis: A Bayesian Tutorial
,
Oxford University Press
,
London, UK
.
21.
Jaynes
,
E. T.
, 2003,
Probability Theory: The Logic of Science
,
Cambridge University Press
,
Cambridge, England
.
22.
Jaynes
,
E. T.
, 1986, “
Bayesian Methods: An Introductory Tutorial
,”
Maximum Entropy and Bayesian Methods in Applied Statistics
,
Cambridge University Press
,
Cambridge, England
.
23.
Loredo
,
T. J.
, 1990, “
From Laplace to Supernova 19871: Bayesian Inference in Astrophysics
,”
Maximum Entropy and Bayesian Methods in Applied Statistics
,
Cambridge University Press
,
Cambridge, England
.
24.
Bretthorst
,
G. L.
, 1990, “
Bayesian Model Selection: Examples Relevant to NMR
,”
Maximum Entropy and Bayesian Methods
,
P.
Skilling
, eds.,
Kluwer
,
Dordrecht
, pp.
377
388
.
25.
Bretthorst
,
G. L.
, 1990, “
An Introduction to Parameter Estimation Using Bayesian Probability
,”
Maximum Entropy and Bayesian Methods
,
P.
Fougere
, eds.,
Kluwer
,
Dordrecht
, pp.
53
79
.
26.
MacKay
,
D. J. C.
, 1992, “
A Practical Bayesian Framework for Back-Propagation Networks
,”
Neural Comput.
0899-7667,
4
(
3
), pp.
448
472
.
27.
MacKay
,
D. J. C.
, 1992, “
Bayesian Interpolation
,”
Neural Comput.
0899-7667,
4
(
3
), pp.
415
447
.
28.
Thodberg
,
H. H.
, 1993, “
Ace of Bayes: Application of Neural Networks With Pruning
,” Technical Report No. 1132E,
The Danish Meat Research Institute
, Denmark.
29.
Nabney
,
I. T.
, 2002,
NETLAB: Algorithms for Pattern Recognition
,
Springer
,
New York
, http://www.ncrg.aston.ac.uk/netlab/http://www.ncrg.aston.ac.uk/netlab/
30.
Reindl
,
D. T.
,
Beckman
,
W. A.
, and
Duffie
,
J. A.
, 1990, “
Diffuse Fraction Correlations
,”
Sol. Energy
0038-092X,
45
(
1
), pp.
1
7
.
31.
Reindl
,
D. T.
,
Beckman
,
W. A.
, and
Duffie
,
J. A.
, 1990, “
Evaluation of Hourly Tilted Surface Radiation
,”
Sol. Energy
0038-092X,
45
(
1
), pp.
9
17
.
32.
Boland
,
J.
, and
Dik
,
M.
, 2001, “
The Level of Complexity Needed for Weather Data in Models of Solar System Performance
,”
Sol. Energy
0038-092X,
71
(
3
), pp.
187
191
.
You do not currently have access to this content.