High temperature biomass gasification has been performed in a prototype concentrated solar reactor. Gasification of biomass at high temperatures has many advantages compared with historical methods of producing fuels. Enhancements in overall conversion, product composition ratios, and tar reduction are achievable at temperatures greater than 1000°C. Furthermore, the utilization of concentrated solar energy to drive these reactions eliminates the need to consume a portion of the product stream for heating and some of the solar energy is stored as chemical energy in the product stream. Experiments to determine the effects of temperature, gas flow rate, and feed type were conducted at the high flux solar furnace at the National Renewable Energy Laboratory, Golden, CO. These experiments were conducted in a reflective cavity multitube prototype reactor. Biomass type was found to be the only significant factor within a 95% confidence interval. Biomass conversion as high as 68% was achieved on sun. Construction and design considerations of the prototype reactor are discussed as well as initial performance results.

1.
Doman
,
L. ,
2006, International Energy Outlook 2006, Energy Information Administration No. DOE/EIA-0484.
2.
Berndes
,
G.
,
Hoogwijk
,
M.
, and
Broek
,
R. V. D.
, 2003, “
The Contribution of Biomass in the Future Global Energy Supply: A Review of 17 Studies
,”
Biomass Bioenergy
0961-9534,
25
, pp.
1
28
.
3.
Perlack
,
R.
,
Wright
,
L.
,
Turhollow
,
A.
, and
Graham
,
R.
, 2005, “
Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply
,” U.S. Department of Energy under Contract No. DE-AC05-000R22725, Prepared by Oak Ridge National Laboratory.
4.
Wright
,
L.
, 2006, “
Biomass Energy Data Book: Edition 1
,” US Department of Energy under Contract No. DE-AC05-00OR22725, Prepared by Oak Ridge National Laboratory.
5.
US DOE
, 2004, “
Biomass Feedstock Composition and Property Database
,” Updated May 14, http://www1.eere.energy.gov/biomass/feedstock_databases.htmlhttp://www1.eere.energy.gov/biomass/feedstock_databases.html
6.
Shapouri
,
H.
,
Salassi
,
M.
, and
Fairbanks
,
J. N.
, 2006, The Economic Feasibility of Ethanol Production From Sugar in the United States.
7.
Bridgwater
,
A. V.
, 1995, “
The Technical and Economic Feasibility of Biomass Gasification for Power Generation
,”
Fuel
0016-2361,
74
(
5
), pp.
631
653
.
8.
Spath
,
P. L.
, and
Dayton
,
D. C.
, 2003, “
Preliminary Screening—Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals With Emphasis on the Potential for Biomass-Derived Syngas
,” NREL/TP-510-34929.
9.
Kumar
,
A.
,
Eskridge
,
K.
,
Jones
,
D.
, and
Hanna
,
M.
, 2009, “
Steam-Air Fluidized Bed Gasification of Distillers Grains: Effects of Steam to Biomass Ratio, Equivalence Ratio and Gasification Temperature
,”
Bioresour. Technol.
0960-8524,
100
, pp.
2062
2068
.
10.
Brown
,
A. L.
,
Dayton
,
D. C.
,
Nimlos
,
M. R.
, and
Daily
,
J. W.
, 2001, “
Design and Characterization of and Entrained Flow Reactor for the Study of Biomass Pyrolysis Chemistry at High Heating Rates
,”
Energy Fuels
0887-0624,
15
, pp.
1276
1285
.
11.
Dupont
,
C.
,
Boissonnet
,
G.
,
Seiler
,
J.
,
Gauthier
,
P.
, and
Schweich
,
D.
, 2007, “
Study About the Kinetic Processes of Biomass Steam Gasification
,”
Fuel
0016-2361,
86
, pp.
32
40
.
12.
Antal
,
M. J.
,
Hofmann
,
L.
, and
Moreira
,
J. R.
, 1983, “
Design and Operation of a Solar Fired Biomass Flash Pyrolysis Reactor
,”
Sol. Energy
0038-092X,
30
(
4
), pp.
299
312
.
13.
Lede
,
J.
, 1999, “
Solar Thermochemical Conversion of Biomass
,”
Sol. Energy
0038-092X,
65
(
1
), pp.
3
13
.
14.
Gregg
,
D. W.
,
Taylor
,
R. W.
,
Campbell
,
J. H.
,
Taylor
,
J. R.
, and
Cotton
,
A.
, 1980, “
Solar Gasification of Coal, Activated Carbon, Coke and Coal and Biomass Mixtures
,”
Sol. Energy
0038-092X,
25
, pp.
353
364
.
15.
Perkins
,
C.
, and
Weimer
,
A. W.
, 2009, “
Perspective—Solar-Thermal Production of Renewable Hydrogen
,”
AIChE J.
0001-1541,
55
(
2
), pp.
286
293
.
16.
Segal
,
A.
, and
Epstein
,
M.
, 1999, “
Comparative Performances of ‘Tower-Top’ and ‘Tower-Reflector’ Central Solar Receivers
,”
Sol. Energy
0038-092X,
65
(
4
), pp.
207
226
.
17.
Steinfeld
,
A.
,
Sanders
,
S.
, and
Palumbo
,
R.
, 1999, “
Design Aspects of Solar Thermochemical Engineering—A Case Study: Two-Step Water-Splitting Cycle Using the Fe3O4/FeO Redox System
,”
Sol. Energy
0038-092X,
65
, pp.
43
53
.
18.
Melchior
,
T.
,
Perkins
,
C.
,
Lichty
,
P.
,
Weimer
,
A. W.
, and
Steinfeld
,
A.
, 2009, “
Solar-Driven Biochar Gasification in a Particleflow Reactor
,”
Chem. Eng. Process.
0255-2701,
48
(
8
), pp.
1279
1287
.
19.
Imhof
,
A.
, 1997, “
Decomposition of Limestone in a Solar Reactor
,”
Renew. Energy
,
10
(
2–3
), pp.
239
246
.
20.
Steinfeld
,
A.
, 2002, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
0360-3199,
27
, pp.
611
619
.
21.
Z’Graggen
,
A.
,
Haueter
,
P.
,
Trommer
,
D.
,
Romero
,
M.
,
de Jesus
,
J. C.
, and
Steinfeld
,
A.
, 2006, “
Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power—II Reactor Design, Testing, and Modeling
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
797
811
.
22.
Bilgen
,
E.
, and
Galindo
,
J.
, 1981, “
High-Temperature Solar Reactors for Hydrogen-Production
,”
Int. J. Hydrogen Energy
0360-3199,
6
(
2
), pp.
139
152
.
23.
Wieckert
,
C.
,
Palumbo
,
R.
, and
Frommherz
,
U.
, 2004, “
A Two-Cavity Reactor for Solar Chemical Processes: Heat Transfer Model and Application to Carbothermic Reduction of ZnO
,”
Energy
0360-5442,
29
(
5–6
), pp.
771
787
.
24.
Vishnevetsky
,
I.
, 2006, “
Feasibility Study on Non-Windowed Solar Reactor: ZnO Carboreduction as an Example
,”
Sol. Energy
0038-092X,
80
, pp.
1363
1375
.
25.
Haueter
,
P.
,
Moeller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
, 1999, “
The Production of Zinc by Thermal Dissociation of Zinc Oxide—Solar Chemical Reactor Design
,”
Sol. Energy
0038-092X,
67
, pp.
161
167
.
26.
Han
,
J.
, 2008, “
The Reduction and Control Technology of Tar During Biomass Gasification/Pyrolysis: An Overview
,”
Renew. Sustain. Energy Rev.
,
12
(
2
), pp.
397
416
.
27.
Dahl
,
J. K.
,
Buechler
,
K. J.
,
Weimer
,
A. W.
,
Lewandowski
,
A.
, and
Bingham
,
C.
, 2004, “
Solar-Thermal Dissociation of Methane in a Fluid-Wall Aerosol Flow Reactor
,”
Int. J. Hydrogen Energy
0360-3199,
29
(
7
), pp.
725
736
.
28.
Melchior
,
T.
,
Perkins
,
C.
,
Weimer
,
A. W.
, and
Steinfeld
,
A.
, 2008, “
A Cavity-Receiver Containing a Tubular Absorber for High-Temperature Thermochemical Processing Using Concentrated Solar Energy
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
1496
1503
.
29.
Haussener
,
S.
,
Hirsch
,
D.
,
Perkins
,
C.
,
Lewandowski
,
A.
,
Steinfeld
,
A.
, and
Weimer
,
A. W.
, 2009, “
Modeling of a Multi-Tube Solar Reactor for Hydrogen Production at High Temperatures
,” in press,
ASME J. Sol. Energy Eng.
0199-6231,
131
, p.
024503
.
30.
Spencer
,
G.
, 1962, “
General Ray-Tracing Procedure
,”
J. Opt. Soc. Am.
0030-3941,
52
(
6
), pp.
672
676
.
31.
Lewandowski
,
A.
, 1991, “
Performance Characterization of the SERI High-Flux Solar Furnace
,”
Solar Energy Materials
,
24
, pp.
550
563
.
32.
Haynes® 214® Alloy Information: 75Ni–16Cr–4.5Al–3Fe-0.5*Mn-0.2*Si-0.1*Zr-0.05C–0.01*B-0.01Y, http://www.haynesintl.com/214HAYNESALLOY.htmhttp://www.haynesintl.com/214HAYNESALLOY.htm
You do not currently have access to this content.