The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target midinfrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling of radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers including: (1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements, (2) selection of materials with proper THz properties, and (3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square-loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV devices.

1.
Consolmagno
,
G. J.
, and
Schaefer
,
M. W.
, 1944,
World’s Apart: A Textbook in Planetary Sciences
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
4.
Wilke
,
I.
,
Oppliger
,
Y.
,
Herrmann
,
W.
, and
Kneubuhl
,
F. K.
, 1944, “
Nanometer Thin-Film Ni-NiO-Ni Diodes for 30 THz Radiation
,”
Appl. Phys.
0721-7250,
A58
, pp.
329
341
.
5.
Krishnan
,
S.
,
Bhansali
,
S.
,
Buckle
,
K.
, and
Stefanakos
,
E.
, 2006,“
Fabrication and Characterization of Thin-Film Metal-Insulator-Metal Diode for Use in Rectenna as Infrared Detector
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
935
, pp.
40
47
.
6.
Alda
,
J.
,
Rico-García
,
J.
,
López-Alonso
,
J.
, and
Boreman
,
G.
, 2005, “
Optical Antennas for Nano-Photonic Applications
,”
Nanotechnology
0957-4484,
16
, pp.
S230
S234
.
7.
Hoertz
,
P. G.
,
Staniszewski
,
A.
,
Marton
,
A.
,
Higgins
,
G. T.
,
Incarvito
,
C. D.
,
Rheingold
,
A. L.
, and
Meyer
,
G. J.
, 2006, “
Toward Exceeding the Shockley–Queisser Limit: Photoinduced Interfacial Charge Transfer Processes that Store Energy in Excess of the Equilibrated Excited State
,”
J. Am. Chem. Soc.
0002-7863,
128
, pp.
8234
8245
.
8.
Munk
,
B. A.
, 2000,
Frequency Selective Surfaces: Theory and Design
,
Wiley
,
New York, NY
, pp.
2
23
.
9.
Gonzalez
,
F. J.
,
Ilic
,
B.
,
Alda
,
J.
, and
Boreman
,
G. D.
, 2005, “
Antenna-Coupled Infrared Detectors for Imaging Applications
,”
IEEE J. Sel. Top. Quantum Electron.
1077-260X,
11
(
1
), pp.
117
120
.
10.
Henderson
,
L. W.
, 1993, “
Introduction to PMM, Version 4.0
,” Ohio State University, EletroScience Laboratory, Columbus, OH, Technical Report No. 725 347-1, Contract SC-SP18-91-0001.
11.
Monacelli
,
B.
,
Pryor
,
J.
,
Munk
,
B.
,
Kotter
,
D.
, and
Boreman
,
G.
, 2005, “
Infrared Frequency Selective Surfaces Based On Circuit-Analog Square Loop Design
,”
IEEE Trans. Antennas Propag.
0018-926X,
53
(
2
), pp.
745
752
.
12.
Monacelli
,
B.
,
Pryor
,
J.
,
Munk
,
B.
,
Kotter
,
D.
, and
Boreman
,
G.
, 2005, “
Infrared Frequency Selective Surfaces: Square Loop Versus Square-Slot Element Comparison
,” Paper No. AP0508-0657.
13.
Land
,
E. H.
, 1977, “
An Introduction to Polavision
,”
Photograph. Sci. Eng.
0031-8760,
21
(
5
), pp.
225
236
.
14.
Slafer
,
W. D.
,
Walworth
,
V. K.
,
Holland
,
A. B.
, and
Cowan
,
J. J.
, 1987, “
Investigation of Arrayed Silver Halide Grains
,”
J. Imaging Sci.
8750-9237,
31
, pp.
117
125
.
15.
Cowan
,
J. J.
, and
Slafer
,
W. D.
, 1986, “
Holographic Embossing at Polaroid: The Polaform Process
,”
Progress in Holographic Applications-1985, SPIE Proceedings Vol. 600
, pp.
49
56
.
16.
Slafer
,
W. D.
,
Kime
,
M.
,
Monen
,
M.
,
Horton
,
W.
, and
Wan
,
L.
, 1992, “
Continuous Web Manufacturing of Thin Coversheet Optical Media
,”
SPIE Proceedings, Optical Data Storage
, Vol.
1663
, pp.
324
335
.
17.
Praino
,
R. F.
, and
Slafer
,
W. D.
, 2006, “
Techniques for Patterning Conductive Layers
,”
Invited Paper Presented at the 2006 AIMCAL Fall Technical Conference
, Reno, NV, Oct. 22–25.
18.
Slafer
,
W. D.
, and
Praino
,
R. F.
, 2008, “
Progress in Roll-to-Roll Patterning of Transparent & Metallic Conductors
,”
Proceedings of USDC/FlexTech Alliance Flexible Electronics and Displays Conference, 9.3
, Phoenix, AZ, Jan. 21–24.
19.
Isailovic
,
J.
, 1985,
Videodisc and Optical Memory Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Ansoft Corporation
, 2005, Ansoft High Frequency Structure Simulator, User’s Guide, Vol. 10.
You do not currently have access to this content.