A molten-salt thermocline tank is a low-cost option for thermal energy storage (TES) in concentrating solar power (CSP) plants. Typical dual-media thermocline (DMT) tanks contain molten salt and a filler material that provides sensible heat capacity at reduced cost. However, conventional quartzite rock filler introduces the potential for thermomechanical failure by successive thermal ratcheting of the tank wall under cyclical operation. To avoid this potential mode of failure, the tank may be operated as a single-medium thermocline (SMT) tank containing solely molten salt. However, in the absence of filler material to dampen tank-scale convection eddies, internal mixing can reduce the quality of the stored thermal energy. To assess the relative merits of these two approaches, the operation of DMT and SMT tanks is simulated under different periodic charge/discharge cycles and tank wall boundary conditions to compare the performance with and without a filler material. For all conditions assessed, both thermocline tank designs have excellent thermal storage performance, although marginally higher first- and second-law efficiencies are predicted for the SMT tank. While heat loss through the tank wall to the ambient induces internal flow nonuniformities in the SMT design over the scale of the entire tank, strong stratification maintains separation of the hot and cold regions by a narrow thermocline; thermocline growth is limited by the low thermal diffusivity of the molten salt. Heat transport and flow phenomena inside the DMT tank, on the other hand, are governed to a great extent by thermal diffusion, which causes elongation of the thermocline. Both tanks are highly resistant to performance loss over periods of static operation, and the deleterious effects of dwell time are limited in both tank designs.

References

1.
Ibrahim
,
H.
,
Ilinca
,
A.
, and
Perron
,
J.
,
2008
, “
Energy Storage Systems: Characteristics and Comparisons
,”
Renewable Sustainable Energy Rev.
,
12
(
5
), pp.
1221
1250
.10.1016/j.rser.2007.01.023
2.
Gil
,
A.
,
Medrano
,
M.
,
Martorell
,
I.
,
Lázaro
,
A.
,
Dolado
,
P.
,
Zalba
,
B.
, and
Cabeza
,
L. F.
,
2010
, “
State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1: Concepts, Materials and Modellization
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
31
55
.10.1016/j.rser.2009.07.035
3.
Tamme
,
R.
,
Laing
,
D.
, and
Steinmann
,
W. D.
,
2004
, “
Advanced Thermal Energy Storage Technology for Parabolic Trough
,”
ASME J. Sol. Energy Eng.
,
126
(
2
), pp.
794
800
.10.1115/1.1687404
4.
Luzzi
,
A.
,
Lovegrove
,
K.
,
Filippi
,
E.
,
Fricker
,
H.
,
Schmitz-Goeb
,
M.
,
Chandapillai
,
M.
, and
Kaneff
,
S.
,
1999
, “
Techno-Economic Analysis of a 10 MWe Solar Thermal Power Plant Using Ammonia-Based Thermochemical Energy Storage
,”
Sol. Energy
,
66
(
2
), pp.
91
101
.10.1016/S0038-092X(98)00108-X
5.
Herrmann
,
U.
,
Kelly
,
B.
, and
Price
,
H.
,
2004
, “
Two-Tank Molten Salt Storage for Parabolic Trough Solar Power Plants
,”
Energy
,
29
(
5–6
), pp.
883
893
.10.1016/S0360-5442(03)00193-2
6.
Dincer
,
I.
,
2002
, “
On Thermal Energy Storage Systems and Applications in Buildings
,”
Energy Build.
,
34
(
4
), pp.
377
388
.10.1016/S0378-7788(01)00126-8
7.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
,
Kelly
,
B.
,
Mahoney
,
R.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
N.
,
Blake
,
D.
, and
Price
,
H.
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
170
176
.10.1115/1.1565087
8.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
153
159
.10.1115/1.1464123
9.
Zurigat
,
Y.
,
Liche
,
P.
, and
Ghajar
,
A.
,
1991
, “
Influence of Inlet Geometry on Mixing in Thermocline Thermal Energy Storage
,”
Int. J. Heat Mass Transf.
,
34
(
1
), pp.
115
125
.10.1016/0017-9310(91)90179-I
10.
Chung
,
J. D.
,
Cho
,
S. H.
,
Tae
,
C. S.
, and
Yoo
,
H.
,
2008
, “
The Effect of Diffuser Configuration on Thermal Stratification in a Rectangular Storage Tank
,”
Renewable Energy
,
33
(
10
), pp.
2236
2245
.10.1016/j.renene.2007.12.013
11.
Li
,
P.
,
Van Lew
,
J.
,
Karaki
,
W.
,
Chan
,
C.
,
Stephens
,
J.
, and
Wang
,
Q.
,
2011
, “
Generalized Charts of Energy Storage Effectiveness for Thermocline Heat Storage Tank Design and Calibration
,”
Sol. Energy
,
85
(
9
), pp.
2130
2143
.10.1016/j.solener.2011.05.022
12.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Thermal Analysis of Solar Thermal Energy Storage in a Molten-Salt Thermocline
,”
Sol. Energy
,
84
(
6
), pp.
974
985
.10.1016/j.solener.2010.03.007
13.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2013
, “
Cyclic Operation of Molten-Salt Thermal Energy Storage in Thermoclines for Solar Power Plants
,”
Appl. Energy
,
103
, pp.
256
265
.10.1016/j.apenergy.2012.09.043
14.
Flueckiger
,
S. M.
,
Yang
,
Z.
, and
Garimella
,
S. V.
,
2012
, “
Thermomechanical Simulation of the Solar One Thermocline Storage Tank
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041014
.10.1115/1.4007665
15.
Flueckiger
,
S. M.
,
Iverson
,
B. D.
,
Garimella
,
S. V.
, and
Pacheco
,
J. E.
,
2014
, “
System-Level Simulation of a Solar Power Tower Plant With Thermocline Thermal Energy Storage
,”
Appl. Energy
,
113
(
86–96
), pp.
86
96
.10.1016/j.apenergy.2013.07.004
16.
Abdoly
,
M.
, and
Rapp
,
D.
,
1982
, “
Theoretical and Experimental Studies of Stratified Thermocline Storage of Hot Water
,”
Energy Conversation Manage.
,
22
(
3
), pp.
275
285
.10.1016/0196-8904(82)90053-X
17.
Yoo
,
H.
, and
Pak
,
E.
,
1993
, “
Theoretical Model of the Charging Process for Stratified Thermal Storage Tanks
,”
Sol. Energy
,
51
(
6
), pp.
513
519
.10.1016/0038-092X(93)90136-C
18.
Han
,
Y. M.
,
Wang
,
R. Z.
, and
Dai
,
Y. J.
,
2009
, “
Thermal Stratification Within the Water Tank
,”
Renewable Sustainable Energy Rev.
,
13
(
5
), pp.
1014
1026
.10.1016/j.rser.2008.03.001
19.
Bahnfleth
,
W. P.
, and
Song
,
J.
,
2005
, “
Constant Flow Rate Charging Characteristics of a Full-Scale Stratified Chilled Water Storage Tank With Double-Ring Slotted Pipe Diffusers
,”
Appl. Therm. Eng.
,
25
(
17–18
), pp.
3067
3082
.10.1016/j.applthermaleng.2005.03.013
20.
Al-Najem
,
N.
,
1993
, “
Degradation of a Stratified Thermocline in a Solar Storage Tank
,”
Int. J. Energy Res.
,
17
(
3
), pp.
183
191
.10.1002/er.4440170306
21.
Wood
,
R. J.
,
Al-Muslahi
,
S. M.
,
O'Callaghan
,
P. W.
, and
Probert
,
S. D.
,
1981
, “
Thermally Stratified Hot Water Storage Systems
,”
Appl. Energy
,
9
(
3
), pp.
231
242
.10.1016/0306-2619(81)90035-0
22.
Pacheco
,
J. E.
,
Ralph
,
M. E.
,
Chavez
,
J. M.
,
Dunkin
,
S. R.
,
Rush
,
E. E.
,
Ghanbari
,
C. M.
, and
Matthews
,
M. W.
,
1995
, “
Results of Molten Salt Panel and Component Experiments for Solar Central Receivers: Cold Fill, Freeze/Thaw, Thermal Cycling and Shock, and Instrumentation
,” Sandia National Laboratories Report No. SAND94-2525.
23.
Côté
,
J.
, and
Konrad
,
J.
,
2005
, “
A Generalized Thermal Conductivity Model for Soils and Construction Materials
,”
Can. Geotech. J.
,
458
, pp.
443
458
10.1139/t04-106.
24.
EPRI
,
2010
, “
Solar Thermocline Storage Systems: Preliminary Design Study
,” Palo Alto, CA.
25.
Pilato
,
L.
,
2010
,
Phenolic Resins: A Century of Progress
,
Springer
,
New York
10.1007/978-3-642-04714-5.
26.
Beckermann
,
C.
, and
Viskanta
,
R.
,
1988
, “
Natural Convection Solid/Liquid Phase Change in Porous Media
,”
Int. J. Heat Mass Transf.
,
31
(
1
), pp.
35
46
.10.1016/0017-9310(88)90220-7
27.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2004
, “
A Two-Temperature Model for the Analysis of Passive Thermal Control Systems
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
628
637
.10.1115/1.1773194
28.
Wakao
,
N.
, and
Kaguei
,
S.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach Science Publishers
,
New York
.
29.
Gonzo
,
E. E.
,
2002
, “
Estimating Correlations for the Effective Thermal Conductivity of Granular Materials
,”
Chem. Eng. J.
,
90
(
3
), pp.
299
302
.10.1016/S1385-8947(02)00121-3
30.
Ansys
,
2011
, “Fluent 14.5.0,” Canonsburg, PA.
31.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
10.1016/0021-9991(86)90099-9.
32.
Mira-Hernández
,
C.
,
Flueckiger
,
S.
, and
Garimella
,
S.
,
2014
, “
Numerical Simulation of Single-and Dual-media Thermocline Tanks for Energy Storage in Concentrating Solar Power Plants
,”
Energy Proc.
,
49
, pp.
916
926
.10.1016/j.egypro.2014.03.099
You do not currently have access to this content.