Effect of 1,8-diiodooctane on the performance of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) solar cells with glass/indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/P3HT: PCBM/Ca/Al structure was studied. The morphology and thickness of the active layer were investigated using atomic force microscopy (AFM). The UV-visible spectroscopy and X-ray diffraction (XRD) analysis were used to study the absorption behavior (of the solutions and coated layers) and crystallinity of the active layer, respectively. The results show that the existence of 1,8-diiodooctane reduced the open circuit voltage from 0.81 to 0.52 V and increased the short circuit current by about three folds; the fill factor (FF) and power conversion efficiency were increased from 36.0 to 54.1% and 0.47% to 1.54%, respectively. These changes can be attributed to the enhanced crystallinity of P3HT or the doping effect of 1,8-diiodooctane on P3HT chains. UV-visible analysis demonstrated that the addition of 1,8-diiodooctane to the solution did not change the absorption onset, whereas in the coated layers, the maximum absorption peak shifted to higher wavelengths. The XRD analyses demonstrated the enhancement of crystallinity of P3HT upon the introduction of 1,8-diiodooctane.

References

1.
Padinger
,
F.
,
Rittberger
,
R. S.
, and
Sariciftci
,
N. S.
,
2003
, “
Effects of Postproduction Treatment on Plastic Solar Cells
,”
Adv. Funct. Mater.
,
13
(
2
), pp.
85
88
.10.1002/adfm.200390011
2.
Shaheen
,
S. E.
,
Brabec
,
C. J.
,
Sariciftci
,
N. S.
,
Padinger
,
F.
,
Fromherz
,
T.
, and
Hummelen
,
J. C.
,
2001
, “
2.5% Efficient Organic Plastic Solar Cells
,”
Appl. Phys. Lett.
,
78
(
6
), pp.
841
843
.10.1063/1.1345834
3.
Brabec
,
C. J.
,
Sariciftci
,
N. S.
, and
Hummelen
,
J. C.
,
2001
, “
Plastic Solar Cells
,”
Adv. Funct. Mater.
,
11
(
1
), pp.
15
26
.10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
4.
Brabec
,
C. J.
,
2004
, “
Organic Photovoltaics: Technology and Market
,”
Sol. Energy Mater. Sol. Cells
,
83
(
2–3
), pp.
273
292
.10.1016/j.solmat.2004.02.030
5.
Yu
,
G.
,
Gao
,
J.
,
Hummelen
,
J. C.
,
Wudl
,
F.
, and
Heeger
,
A. J.
,
1995
, “
Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions
,”
Science
,
270
(
5243
), pp.
1789
1791
.10.1126/science.270.5243.1789
6.
Green
,
M. A.
,
Emery
,
K.
,
Hishikawa
,
Y.
, and
Warta
,
W.
,
2011
, “
Solar Cell Efficiency Tables Version 37
,”
Prog. Photovoltaics: Res. Appl.
,
19
(
1
), pp.
84
92
.10.1002/pip.1088
7.
Brabec
,
C. J.
,
Gowrisanker
,
S.
,
Halls
,
J. J. M.
,
Laird
,
D.
,
Jia
,
S.
, and
Williams
,
S. P.
,
2010
, “
Polymer–Fullerene Bulk-Heterojunction Solar Cells
,”
Adv. Mater.
,
22
(
34
), pp.
3839
3856
.10.1002/adma.200903697
8.
Li
,
G.
,
Shrotriya
,
V.
,
Huang
,
J.
,
Yao
,
Y.
,
Moriarty
,
T.
,
Emery
,
K.
, and
Yang
,
Y.
,
2005
, “
High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends
,”
Nature Mater.
,
4
(11), pp.
864
868
.10.1038/nmat1500
9.
Lee
,
J. K.
,
Ma
,
W. L.
,
Brabec
,
C. J.
,
Yuen
,
J.
,
Moon
,
J. S.
,
Kim
,
J. Y.
,
Lee
,
K.
,
Bazan
,
G. C.
, and
Heeger
,
A. J.
,
2008
, “
Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells
,”
J. Am. Chem. Soc.
,
130
(
11
), pp.
3619
3623
.10.1021/ja710079w
10.
Moul
,
A. J.
, and
Meerholz
,
K.
,
2008
, “
Controlling Morphology in Polymer-Fullerene Mixtures
,”
Adv. Mater.
,
20
(
2
), pp.
240
245
.10.1002/adma.200701519
11.
Hoppe
,
H.
, and
Sariciftci
,
N. S.
,
2006
, “
Morphology of Polymer/Fullerene Bulk Heterojunction Solar Cells
,”
J. Mater. Chem.
,
16
(1), pp.
45
61
.10.1039/b510618b
12.
Chen
,
C.-C.
,
Chang
,
W.-H.
,
Yoshimura
,
K.
,
Ohya
,
K.
,
You
,
J.
,
Gao
,
J.
,
Hong
,
Z.
, and
Yang
,
Y.
,
2014
, “
An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%
,”
Adv. Mater.
,
26
(
32
), pp.
5670
5677
.10.1002/adma.201402072
13.
You
,
J.
,
Dou
,
L.
,
Yoshimura
,
K.
,
Kato
,
T.
,
Ohya
,
K.
,
Moriarty
,
T.
,
Emery
,
K.
,
Chen
,
C.-C.
,
Gao
,
J.
,
Li
,
G.
, and
Yang
,
Y.
,
2013
, “
A Polymer Tandem Solar Cell With 10.6% Power Conversion Efficiency
,”
Nature Commun.
,
4
, Article number: 1446.10.1038/ncomms2411
14.
Satapathi
,
S.
,
Gill
,
H. S.
,
Li
,
L.
,
Samuelson
,
L.
,
Kumar
,
J.
, and
Mosurkal
,
R.
,
2014
, “
Synthesis of Nanoparticles of P3HT and PCBM for Optimizing Morphology in Polymeric Solar Cells
,”
Appl. Surf. Sci.
,
323
, pp.
13
18
.10.1016/j.apsusc.2014.07.175
15.
Li
,
L.
,
Jacobs
,
D. L.
,
Che
,
Y.
,
Huang
,
H.
,
Bunes
,
B. R.
,
Yang
,
X.
, and
Zang
,
L.
,
2013
, “
Poly(3-Hexylthiophene) Nanofiber Networks for Enhancing the Morphology Stability of Polymer Solar Cells
,”
Org. Electron.
,
14
(5), pp.
1383
1390
.10.1016/j.orgel.2013.02.032
16.
Lin
,
S.-H.
,
Lan
,
S.
,
Sun
,
J.-Y.
, and
Lin
,
C.-F.
,
2013
, “
Influence of Mixed Solvent on the Morphology of the P3ht:Indene-C60 Bisadduct (Icba) Blend Film and the Performance of Inverted Polymer Solar Cells
,”
Org. Electron.
,
14
(
1
), pp.
26
31
.10.1016/j.orgel.2012.10.015
17.
Zheng
,
Y.
,
Li
,
S.
,
Zheng
,
D.
, and
Yu
,
J.
,
2014
, “
Effects of Different Polar Solvents for Solvent Vapor Annealing Treatment on the Performance of Polymer Solar Cells
,”
Org. Electron.
,
15
(
11
), pp.
2647
2653
.10.1016/j.orgel.2014.07.026
18.
Gholamkhass
,
B.
, and
Servati
,
P.
,
2013
, “
Solvent–Vapor Induced Morphology Reconstruction for Efficient Pcdtbt Based Polymer Solar Cells
,”
Org. Electron.
,
14
(
9
), pp.
2278
2283
.10.1016/j.orgel.2013.05.014
19.
Das
,
S.
,
Choi
,
J.-Y.
, and
Alford
,
T. L.
,
2015
, “
P3HT:PC61BM Based Solar Cells Employing Solution Processed Copper Iodide as the Hole Transport Layer
,”
Solar Energy Mater. Solar Cells
,
133
, pp.
255
259
.10.1016/j.solmat.2014.11.004
20.
Hu
,
Z.
,
Zhang
,
J.
,
Huang
,
L.
,
Sun
,
J.
,
Zhang
,
T.
,
He
,
H.
,
Zhang
,
J.
,
Zhang
,
H.
, and
Zhu
,
Y.
,
2015
, “
Natural Drying Effect on Active Layer for Achieving High Performance in Polymer Solar Cells
,”
Renewable Energy
,
74
, pp.
11
17
.10.1016/j.renene.2014.07.034
21.
Coates
,
N. E.
,
Hwang
,
I. W.
,
Peet
,
J.
,
Bazan
,
G. C.
,
Moses
,
D.
, and
Heeger
,
A. J.
,
2008
, “
1,8-Octanedithiol as a Processing Additive for Bulk Heterojunction Materials: Enhanced Photoconductive Response
,”
Appl. Phys. Lett.
,
93
(
7
), p.
072105
.10.1063/1.2969405
22.
Yao
,
Y.
,
Hou
,
J.
,
Xu
,
Z.
,
Li
,
G.
, and
Yang
,
Y.
,
2008
, “
Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells
,”
Adv. Funct. Mater.
,
18
(
12
), pp.
1783
1789
.10.1002/adfm.200701459
23.
Chen
,
H.-Y.
,
Yang
,
H.
,
Yang
,
G.
,
Sista
,
S.
,
Zadoyan
,
R.
,
Li
,
G.
, and
Yang
,
Y.
,
2009
, “
Fast-Grown Interpenetrating Network in Poly(3-Hexylthiophene): Methanofullerenes Solar Cells Processed With Additive
,”
J. Phys. Chem. C
,
113
(
18
), pp.
7946
7953
.10.1021/jp810798z
24.
Erb
,
T.
,
Zhokhavets
,
U.
,
Gobsch
,
G.
,
Raleva
,
S.
,
Stuhn
,
B.
,
Schilinsky
,
P.
,
Waldauf
,
C.
, and
Brabec
,
C. J.
,
2005
, “
Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells
,”
Adv. Funct. Mater.
,
15
(
7
), pp.
1193
1196
.10.1002/adfm.200400521
25.
Aasmundtveit
,
K. E.
,
Samuelsen
,
E. J.
,
Guldstein
,
M.
,
Steinsland
,
C.
,
Flornes
,
O.
,
Fagermo
,
C.
,
Seeberg
,
T. M.
,
Pettersson
,
L. A. A.
,
Inganas
,
O.
,
Feidenhans
,
R.
, and
Ferrer
,
S.
,
2000
, “
Structural Anisotropy of Poly(Alkylthiophene) Films
,”
Macromolecules
,
33
(
8
), pp.
3120
3127
.10.1021/ma991631k
26.
Prosa
,
T. J.
,
Winokur
,
M. J.
,
Moulton
,
J.
,
Smith
,
P.
, and
Heeger
,
A. J.
,
1992
, “
X-Ray Structural Studies of Poly(3-Alkylthiophenes): An Example of an Inverse Comb
,”
Macromolecules
,
25
(
17
), pp.
4364
4372
.10.1021/ma00043a019
27.
Erba
,
T.
,
Raleva
,
S.
,
Zhokhavets
,
U.
,
Gobsch
,
G.
,
Stühn
,
B.
,
Spode
,
M.
, and
Ambacher
,
O.
,
2004
, “
Structural and Optical Properties of Both Pure Poly(3-Octylthiophene) (P3OT) and P3OT/Fullerene Films
,”
Thin Solid Films
,
450
(
1
), pp.
97
100
.10.1016/j.tsf.2003.10.045
You do not currently have access to this content.