Ion-implantation is an advanced technology to inject dopants for shallow junction formation. Due to the ion-induced sputtering effect at low implant energy where dopants tend to accumulate at the silicon surface, the excess ion doses can be easily removed via a surface chemical wet etching process. By taking advantage of the dose limitation characteristic, we proposed a novel method to form shallow emitters with various dopant densities. Two integration flows have been investigated: (1) wet etch after implantation before junction anneal and (2) wet etch after implantation and junction anneal. The two integration flows observed a difference in the density of doping impurities during the thermal process, which is related to the substrate recombination rates. Selective emitter (SE) structures with the two types of integration flows were characterized. Comparing the blanket emitter and SE structures with two types of etching methods, the device with wet etch before annealing process achieved the best effective carrier lifetime of 53.05 μs, which leads to a higher short circuit current density. Hence, this SE cell demonstrated a better blue response and shows an improvement in the conversion efficiency.

References

1.
Lou
,
Y. S.
, and
Wu
,
C. Y.
,
1994
, “
A Self-Consistent Characterization Methodology for Schottky-Barrier Diodes and Ohmic Contacts
,”
IEEE Trans. Electron Devices
,
41
(
4
), pp.
558
566
.
2.
Pang
,
S. K.
, and
Rohatgi
,
A.
,
1993
, “
A New Methodology for Separating Shockley–Read–Hall Lifetime and Auger Recombination Coefficients From the Photoconductivity Decay Technique
,”
J. Appl. Phys.
,
74
(
9
), pp.
5554
5560
.
3.
Solmi
,
S.
,
Landi
,
E.
, and
Baruffaldi
,
F.
,
1990
, “
High‐Concentration Boron Diffusion in Silicon: Simulation of the Precipitation Phenomena
,”
J. Appl. Phys.
,
68
(
7
), pp.
3250
3258
.
4.
Seebauer
,
E. G.
, and
Allen
,
C. E.
,
1995
, “
Estimating Surface Diffusion Coefficients
,”
Prog. Surf. Sci.
,
49
(
3
), pp.
265
330
.
5.
Qin
,
S.
,
Zhuang
,
K.
,
Lu
,
S.
,
Hu
,
Y. J.
, and
McTeer
,
A.
,
2009
, “
Comparative Study of Self-Sputtering Effects of Different Boron-Based Low-Energy Doping Techniques
,”
IEEE Trans. Plasma Sci.
,
37
(
9
), pp.
1760
1766
.
6.
Hieslmair
,
H.
,
Mandrell
,
L.
,
Latchford
,
I.
,
Chun
,
M.
,
Sullivan
,
J.
, and
Adibi
,
B.
,
2012
, “
High Throughput Ion-Implantation for Silicon Solar Cells
,”
Energy Procedia
,
27
, pp.
122
128
.
7.
Yang
,
W. L.
,
Lin
,
T. Y.
,
Lien
,
S. S.
, and
Wang
,
L.
,
2016
, “
Low-Energy Ion Implantation for Shallow Junction Crystalline Silicon Solar Cell
,”
Sol. Energy
,
130
, pp.
25
32
.
8.
Lanterne
,
A.
,
Gall
,
S.
,
Manuel
,
S.
,
Monna
,
R.
,
Ramappa
,
D.
,
Yuan
,
M.
,
Rivalin
,
P.
, and
Tauzin
,
A.
,
2012
, “
Annealing, Passivation and Contacting of Ion Implanted Phosphorus Emitter Solar Cells
,”
Energy Procedia
,
27
, pp.
580
585
.
9.
Michel
,
T.
,
Perchec
,
J. L.
,
Lanterne
,
A.
,
Monna
,
R.
,
Torregrosa
,
F.
,
Roux
,
L.
, and
Commandré
,
M.
,
2015
, “
Phosphorus Emitter Engineering by Plasma-Immersion Ion Implantation for c-Si Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
133
, pp.
194
200
.
10.
Chang
,
R. D.
,
Choi
,
P. S.
,
Kwong
,
D. L.
,
Gardner
,
M.
, and
Chu
,
P. K.
,
2002
, “
Time Dependence of Phosphorus Diffusion and Dose Loss During Postimplantation Annealing at Low Temperatures
,”
Jpn. J. Appl. Phys.
,
41
(
Pt. 1
), pp.
1220
1223
.
11.
Chui
,
C. O.
,
Gopalakrishnan
,
K.
,
Griffin
,
P. B.
,
Plummer
,
J. D.
, and
Saraswat
,
K. C.
,
2003
, “
Activation and Diffusion Studies of Ion-Implanted p and n Dopants in Germanium
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3275
3277
.
12.
Simoen
,
E.
, and
Vanhellemont
,
J.
,
2009
, “
On the Diffusion and Activation of Ion-Implanted n-Type Dopants in Germanium
,”
J. Appl. Phys.
,
106
(
10
), p.
103516
.
13.
Impellizzeri
,
G.
,
Mirabella
,
S.
,
Romano
,
L.
,
Napolitani
,
E.
,
Carnera
,
A.
,
Grimaldi
,
M. G.
, and
Priolo
,
F.
,
2006
, “
Fluorine Incorporation During Si Solid Phase Epitaxy
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
,
242
(
1–2
), pp.
614
616
.
14.
Puglisi
,
R. A.
,
Tanabe
,
H.
,
Chen
,
C. M.
, and
Atwater
,
H. A.
,
2000
, “
Large-Grained Polycrystalline Si Films Obtained by Selective Nucleation and Solid Phase Epitaxy
,”
Mater. Sci. Eng., B
,
73
(
1–3
), pp.
212
217
.
15.
Ruffell
,
S.
,
Mitchell
,
I. V.
, and
Simpson
,
P. J.
,
2005
, “
Solid-Phase Epitaxial Regrowth of Amorphous Layers in Si(100) Created by Low-Energy, High-Fluence Phosphorus Implantation
,”
J. Appl. Phys.
,
98
(
8
), p.
083522
.
16.
Simoen
,
E. R.
,
Brugère
,
A.
,
Satta
,
A.
,
Daele
,
B. V.
,
Brijs
,
B.
,
Richard
,
O.
,
Geypen
,
J.
,
Meuris
,
M.
, and
Vandervorst
,
W.
,
2008
, “
Solid-Phase Epitaxial Regrowth of Phosphorus Implanted Amorphized Germanium
,”
ECS Trans.
,
16
(
10
), pp.
1031
1038
.
17.
Noda
,
T.
,
Vrancken
,
C.
, and
Vandervorst
,
W.
,
2014
, “
Modeling of Junction Formation in Scaled Si Devices
,”
J. Comput. Electron.
,
13
(
1
), pp.
33
39
.
18.
Dubé
,
C. E.
,
Tsefrekas
,
B.
,
Buzby
,
D.
,
Tavares
,
R.
,
Zhang
,
W.
,
Gupta
,
A.
,
Low
,
R. J.
,
Skinner
,
W.
, and
Mullin
,
J.
,
2011
, “
High Efficiency Selective Emitter Cells Using Patterned Ion Implantation
,”
Energy Procedia
,
8
, pp.
706
711
.
19.
Reichel
,
C.
,
Granek
,
F.
,
Benick
,
J.
,
Schultz-Wittmann
,
O.
, and
Glunz
,
S. W.
,
2012
, “
Comparison of Emitter Saturation Current Densities Determined by Injection-Dependent Lifetime Spectroscopy in High and Low Injection Regimes
,”
Prog. Photovoltaics
,
20
(
1
), pp.
21
30
.
20.
Richter
,
A.
,
Glunz
,
S. W.
,
Werner
,
F.
,
Schmidt
,
J.
, and
Cuevas
,
A.
,
2012
, “
Improved Quantitative Description of Auger Recombination in Crystalline Silicon
,”
Phys. Rev. B
,
86
(
16
), p.
165202
.
21.
Liu
,
B.
,
Chen
,
Y.
,
Yang
,
Y.
,
Chen
,
D.
,
Feng
,
Z.
,
Altermatt
,
P. P.
,
Verlinden
,
P.
, and
Shen
,
H.
,
2016
, “
Improved Evaluation of Saturation Currents and Bulk Lifetime in Industrial Si Solar Cells by the Quasi Steady State Photoconductance Decay Method
,”
Sol. Energy Mater. Sol. Cells
,
149
, pp.
258
265
.
22.
McIntosh
,
K. R.
, and
Black
,
L. E.
,
2014
, “
On Effective Surface Recombination Parameters
,”
J. Appl. Phys.
,
116
(
1
), p.
014503
.
23.
Lau
,
F.
,
Mader
,
L.
,
Mazure
,
C.
,
Werner
,
Ch.
, and
Orlowski
,
M.
,
1989
, “
A Model for Phosphorus Segregation at the Silicon-Silicon Dioxide Interface
,”
Appl. Phys. A
,
49
(
6
), pp.
671
675
.
24.
Ruffell
,
S.
,
Mitchell
,
I. V.
, and
Simpson
,
P. J.
,
2005
, “
Annealing Behavior of Low-Energy Ion-Implanted Phosphorus in Silicon
,”
J. Appl. Phys.
,
97
(
12
), p.
123518
.
25.
Trumbore
,
F. A.
,
1960
, “
Solid Solubilities of Impurity Elements in Germanium and Silicon
,”
Bell Labs Tech. J.
,
39
(
1
), pp.
205
233
.
26.
Bachi
,
B. B.
,
Fourmond
,
E.
,
Papet
,
P.
,
Bounaas
,
L.
,
Nichiporuk
,
O.
,
Quang
,
N. L.
, and
Lemiti
,
M.
,
2012
, “
Higher Emitter Quality by Reducing Inactive Phosphorus
,”
Sol. Energy Mater. Sol. Cells
,
105
, pp.
137
141
.
27.
Sinton
,
R. A.
, and
Cuevas
,
A.
,
1996
, “
Contactless Determination of Current–Voltage Characteristics and Minority‐Carrier Lifetimes in Semiconductors From Quasi‐Steady‐State Photoconductance Data
,”
Appl. Phys. Lett.
,
69
(
17
), pp.
2510
2512
.
28.
Watahiki
,
T.
,
Kobayashi
,
Y.
,
Morioka
,
T.
,
Nishimura
,
S.
,
Niinobe
,
D.
,
Nishimura
,
K.
,
Tokioka
,
H.
, and
Yamamuka
,
M.
,
2016
, “
Analysis of Short Circuit Current Loss in Rear Emitter Crystalline Si Solar Cell
,”
J. Appl. Phys.
,
119
(
20
), p.
204501
.
29.
Ho
,
W. J.
,
Lee
,
Y. Y.
, and
Su
,
S. Y.
,
2014
, “
External Quantum Efficiency Response of Thin Silicon Solar Cell Based on Plasmonic Scattering of Indium and Silver Nanoparticles
,”
Nanoscale Res. Lett.
,
9
(
1
), p.
483
.
30.
Terao
,
Y.
,
Sasabe
,
H.
, and
Adachi
,
C.
,
2007
, “
Correlation of Hole Mobility, Exciton Diffusion Length, and Solar Cell Characteristics in Phthalocyanine/Fullerene Organic Solar Cells
,”
Appl. Phys. Lett.
,
90
(
10
), p.
103515
.
You do not currently have access to this content.